
Learning and Inference in Phrase

Recognition: A Filtering-Ranking

Architecture using Perceptron

Tesi Doctoral

per a optar al grau de

Doctor en Informàtica

per

Xavier Carreras Pérez

sota la direcció del doctor

Llúıs Màrquez Villodre

Departament de Llenguatges i Sistemes Informàtics

Universitat Politècnica de Catalunya

Barcelona, Juliol de 2005

2

Abstract

This thesis takes a machine learning approach to the general problem of rec-
ognizing phrases in a sentence. This general problem instantiates in many dis-
ambiguation tasks of Natural Language Processing, such as Shallow Syntactic
Parsing, Clause Identification, Named Entity Extraction or Semantic Role La-
beling. In all of them, a sentence has to be segmented into many labeled phrases,
that form a sequence or hierarchy of phrases.

We study such problems under a unifying framework for recognizing a struc-
ture of phrases in a sentence. The methodology combines learning and inference
techniques, and consists of decomposing the problem of recognizing a complex
structure into many intermediate steps or local decisions, each recognizing a
simple piece of the structure. Such decisions are solved with supervised learn-
ing, by training functions from data that predict outcomes for the decisions.
Inference combines the outcomes of learning functions applied to different parts
of a given sentence to build a phrase structure for it.

In a phrase recognition architecture, two issues are of special interest: effi-
ciency and learnability. By decomposing the general problem into lower-level
problems, both properties can be achieved. On the one hand, the type of local
decisions we deal with are simple enough to be learned with reasonable accu-
racy. On the other hand, the type of representations of a decomposed structure
allows efficient inference algorithms that build a structure by combining many
different pieces.

Within this framework, we discuss a modeling choice related to the granular-
ity at which the problem is decomposed: word-level or phrase-level. Word-level
decompositions, used commonly in shallow parsing tasks, reduce the phrase
recognition problem into a sequential tagging problem, for which many tech-
niques exist. In this thesis, we concentrate on phrase-based models, that put
learning in a context more expressive than word-based models, at the cost of
increasing the complexity of learning and inference processes. We describe in-
cremental inference strategies for both type of models that go from greedy to
robust, with respect to their ability to trade off local predictions to form a coher-
ent phase structure. Finally, we describe discriminative learning strategies for
training the components of a phrase recognition architecture. We focus on large
margin learning algorithms, and discuss the difference between training each
predictor locally and independently, and training globally and dependently all
predictors.

4

As a main contribution, we propose a phrase recognition architecture that we
name Filtering-Ranking. Here, a filtering component is first used to substantially
reduce the space of possible solutions, by applying learning at word level. On the
top of it, a ranking component applies learning at phrase level to discriminate the
best structure among those that pass the filter. We also present a global learning
algorithm based on Perceptron, that we name FR-Perceptron. The algorithm
trains the filters and rankers of the architecture at the same time, and benefits
from the interactions that these predictors exhibit within the architecture.

We present exhaustive experimentation with FR-Perceptron in the context
of several partial parsing problems proposed in the CoNLL Shared Tasks. We
provide empirical evidence that our global learning algorithm is advantageous
over a local learning strategy. Furthermore, the results we obtain are among
the best results published on the tasks, and in some cases they improve the
state-of-the-art.

Agräıments

Em sento afortunat de que en Llúıs Màrquez m’hagi dirigit aquest treball. Fer
recerca sota la seva direcció ha sigut entusiasmador, apassionant i divertit, com
un bon joc. En els moments borrosos m’ha donat consells i suggerències que,
per la via fàcil i simple, han il·luminat els següents passos. Li dono les gràcies
més profundes per la confiança, paciència i treball que ha dipositat en mi.

Hi ha altres persones directament implicades en la qüestió. En Jordi Turmo
i l’Horacio Rodŕıguez —el savi— em van iniciar en l’apassionant món del Pro-
cessament del Llenguatge Natural, i en Llúıs Padró i el German Rigau m’han
donat moltes mostres de com cal fer les coses.

A més, tinc la sort d’haver caigut en un grup de recerca on, sense cap dubte,
hi regna el bon ambient. Pel seu companyerisme, dono les gràcies a la gent
del Grup de Recerca en Processament del Llenguatge Natural i col·laboradors
habituals. A part dels Llüısos, l’Horacio, en Jordi i el German, aqúı ve una
colla de bons col·legues: Alicia Ageno, Laura Alonso, Jordi Atserias, Victòria
Arranz, Manu Bertran, Neus Català, Bernardino Casas, Núria Castell, Irene
Castellón, Isaac Chao, Grzegorz Chrupa la, Montserrat Civit, Pere R. Comas,
Eli Comelles, Montse Cuadros, Jordi Daudé, Gerard Escudero, Javi Farreres,
David Farwell, Dani Ferrés, Maria Fuentes, Marta Gatius, Jesús Giménez, Edgar
González, Meritxell González, Àngels Hernández, Patrik Lambert, Toni Mart́ı,
Muntsa Padró, F.J. Raya, Francis Real, Enrique Romero, Mihai Surdeanu, Llúıs
Villarejo, et al. (per si les mosques).

També vull donar agräıments a les persones del Departament de LSI de la
UPC que me n’han fet un bon lloc de treball, molt especialment a la gent del
laboratori de càlcul i a les secretàries, tots ells tant generosos.

En la part personal, vull donar les gràcies a la meva famı́lia, pel seu amor i
suport. L’esforç que he posat en aquest treball va dedicat a ells.

Acknowledgements

In my doctoral research, I had the amazing opportunity of visiting research cen-
ters abroad. In 2002, I visited Dan Roth at the University of Illinois at Urbana-
Champaign. An important part of my research started there, and many ideas in
this thesis result from discussions with Dan and his students, especially Vasin
Punyakanok. More recently, during the spring of 2004 I could visit Michael

6

Collins at the Massachussets Institute of Technology, in the Boston area. Dis-
cussing machine learning topics with him was great, and gave me new interesting
perspectives that are very valuable to me. I am very grateful to them and to
the people I met there, so friendly.

I express my gratitude to the co-authors of the papers I’ve been involved in
during this thesis research. Here’s the list: Llúıs Màrquez, Llúıs Padró, Jorge
Castro, Enrique Romero, Vasin Punyakanok, Dan Roth, Grzegorz Chrupa la,
Adrià de Gispert, Toni Mart́ı, Montse Arévalo and Maria José Simon. Also,
I thank the two anonymous referees of this thesis for helpful and encouraging
comments on a preliminary version of this document.

From 2001 to 2004, the author was supported by a pre-doctoral grant from
DURSI, the Ministry of Universities, Research and Information Society of the
Catalan Government (grant reference: 2001FI 00663).

The research in this thesis was developed in the context of several research
projects and other initiatives, funded by the following institutions: the Catalan
Ministry of Universities, Research and Information Society (Research Group
of Quality, 2001 SGR 00254), the Spanish Ministry of Science and Technology
(Hermes, TIC2000-0335-C03-02; Petra, TIC2000-1735-C02-02; Aliado, TIC2002-
04447-C02), and the European Union Commission (NAMIC, IST-1999-12392;
Meaning, IST-2001-34460; Chil, IP 506909; PASCAL Network of Excellence,
IST-2002-506778).

Contents

Abstract 3

Agräıments / Acknowledgements 5

1 Introduction 11
1.1 The Phrase Recognition Problem 13

1.1.1 From Full to Partial Syntactic Parsing 13
1.1.2 Phrase Recognition in CoNLL Shared Task Series 15
1.1.3 Problem Definition and Evaluation 18
1.1.4 Generalities . 18
1.1.5 The Machine Learning Approach 20

1.2 This Thesis . 21
1.2.1 Contributions . 21
1.2.2 Organization . 24

2 A Review of Supervised Natural Language Learning 27
2.1 Learning to Disambiguate in Natural Language 27

2.1.1 Probabilistic Learning . 29
2.1.2 Direct, Discriminative Learning 32
2.1.3 Learning and Inference Paradigm 34

2.2 Learning Linear Separators: A Margin Based Approach 38
2.2.1 Theoretical Aspects of Distribution Free Learning 38
2.2.2 Learning Algorithms: From Classification to Discrimina-

tion of Structures . 41
2.3 Learning Systems in Partial Parsing 45

2.3.1 Typical Architectures . 46
2.3.2 A Review of Partial Parsing Systems 50

3 A Framework for Phrase Recognition 53
3.1 A Formal Definition of Phrase Structures 54
3.2 Models . 55

3.2.1 Models at Word-Level . 56
3.2.2 Models at Phrase-Level 58
3.2.3 Models in a Phrase Recognition Architecture 60

8 CONTENTS

3.3 Inference Algorithms . 61
3.3.1 Inference in Word-Based Models 64
3.3.2 Inference in Phrase-Based Models 65
3.3.3 Inference in a Phrase Recognition Architecture 70

3.4 Learning Algorithms for Phrase Recognition 71
3.4.1 Linear Functions for Supervised Classification and Ranking 72
3.4.2 Perceptron Algorithms . 74
3.4.3 Learning in a Phrase Recognition Architecture 78

3.5 Summary . 79

4 A Filtering-Ranking Learning Architecture 81
4.1 Filtering-Ranking Architecture 81

4.1.1 Model . 82
4.1.2 Inference . 82
4.1.3 Learning Components of the Architecture 85

4.2 Filtering-Ranking Perceptron . 85
4.2.1 The Algorithm . 86
4.2.2 Filtering-Ranking Recognition Feedback 87
4.2.3 Binary Classification Feedback 88
4.2.4 Discussion on the FR-Perceptron Algorithm 89
4.2.5 Convergence Analysis of FR-Perceptron 90

4.3 Experiments on Partial Parsing 92
4.3.1 Experimental Setting and Results 92
4.3.2 Local vs. Global Learning 94
4.3.3 A Closer Look at the Filtering Behavior 97
4.3.4 A Closer Look at the Behavior of the Score Function . . . 100

4.4 Conclusion of this Chapter . 102

5 A Pipeline of Systems for Syntactic-Semantic Parsing 105
5.1 A Pipeline of Analyzers . 106
5.2 General Details about the Systems 110

5.2.1 On Representation and Feature Extraction 110
5.2.2 Voted Perceptron (VP) 113

5.3 Syntactic Chunking . 113
5.3.1 Strategy . 113
5.3.2 Features . 114
5.3.3 Results . 115
5.3.4 Comparison to Other Works 117

5.4 Clause Identification . 119
5.4.1 Strategy . 119
5.4.2 Features . 120
5.4.3 Results . 121
5.4.4 Comparison To Other Works 122

5.5 Semantic Role Labeling (SRL) 123
5.5.1 Strategy . 123
5.5.2 Features . 126

CONTENTS 9

5.5.3 Results . 128
5.5.4 Comparison to Other Works 128

5.6 Conclusion of this Chapter . 130

6 Conclusion 131
6.1 Summary and Results . 131
6.2 Future Directions . 132

6.2.1 From Greedy to Robust Inference 132
6.2.2 Learning issues for FR-Perceptron 133
6.2.3 Natural Language Tasks 134
6.2.4 Introducing Knowledge 135
6.2.5 On Representations and Kernels 136

Bibliography 137

A Proof for FR-Perceptron 147

B Author’s Publications 153

10 CONTENTS

Chapter 1

Introduction

Natural Language (NL) processing and understanding requires the general task
of revealing the language structures of text, at morphologic, syntactic and se-
mantic levels [Jurafsky and Martin, 2000]. Broadly speaking, analyzing a sen-
tence consists of segmenting it into words, recognize syntactic elements and their
relationships within a structure, and induce a syntactico-semantic representa-
tion of the many concepts the sentence may express. In this line, a number of
central NL tasks consist of recognizing some type of structure which represents
linguistic elements of the analysis and their relations. Many language applica-
tions, such as Question-Answering, Information Extraction, Machine Transla-
tion, Summarization, etc. build on general tools which perform such tasks.

A major problem is that natural language is ambiguous at all levels. Thus,
the main concern of language analyzers is how to disambiguate the correct
structure of a sentence from all possible structures for it.

This thesis focuses on language structures based on phrases, at the syntactico-
semantic level. In a sentence, phrases group words that together represent a
linguistic element of some nature. For example, the sentence the cat eats fresh
fish can be segmented into three basic syntactic phrases: a noun phrase (the
cat), a verb phrase (eats), and another noun phrase (fresh fish). In the NL
domain, several fundamental tasks consist of recognizing phrases of some type.
Examples of these tasks include Named Entity Extraction, Syntactic Analysis,
or Semantic Role Labeling, among others. Generally, in all cases the task con-
sists of recognizing a set of phrases in a sentence, organized in a structure. The
difference between tasks concerns the nature of the phrases and the relations
they exhibit in a sentence.

The aim of this thesis is to develop machine learning systems for these prob-
lems under a unified framework. Machine learning techniques are used to predict
whether some words of a sentence form a phrase or not. In doing so, it is as-
sumed that there exist some patterns that naturally explain the phrases that
are to be recognized –which certainly exist in natural language. Thus, a crucial
point is to choose a representation of linguistic elements that gives the learning
components enough expressivity to capture the natural patterns.

12 Introduction

An important aspect of our framework are the structural properties of the
problems we are dealing with, with two main issues. The first is computa-
tional. Structurally, a sentence is a sequence of words. The number of possible
phrases in a sentence grows quadratically with the length of the sentence, and
the space of possible phrase structures is of exponential size. In this scenario,
an algorithmic scheme is required to efficiently explore the sentence to recognize
phrases.

The second issue concerns the relations that different phrases in a structure
exhibit. For example, in the syntactic domain it is commonly observed that a
noun phrase is followed by a verb phrase, and that the former is the agent of
the predicate expressed in the verb phrase, as in the cat eats. A more complex
level of dependencies is found when phrases appear under a recursive pattern
in a structure. For example, syntactic clauses appear in a sentence an arbitrary
number of times through coordination, subordination and other patterns. Thus,
an important aspect is to put learning in a context in which these dependencies
can be captured, so that a prediction can benefit from them.

These observations motivate approaches which combine learning and explo-
ration processes, each supporting the other. In this thesis, we refer to this
general approach as learning and inference paradigm. The role of learning is
to capture statistics from training data that serve to accurately and robustly
make predictions about which words form phrases on unseen data. The role of
inference is to efficiently explore the sentence so as to recognize phrases with
learning predictors, ensuring that the recognized phrases form a coherent phrase
structure for the sentence. The research presented in this thesis proposes tech-
niques that follow this paradigm, in the context of several phrase recognition
problems that arise in natural language disambiguation.

The rest of the chapter is organized as follows. The next section describes
the phrase recognition problem and identifies some goals of this thesis. Then,
Section 1.2 presents this thesis contents, starting by over-viewing the major
contributions of this research, and then outlining the organization of the thesis
into chapters.

1.1 The Phrase Recognition Problem 13

1.1 The Phrase Recognition Problem

In this section we describe the phrase recognition problem. We first motivate
the type of problems that we regard as phrase recognition, and introduce the
family of techniques used to solve them. Next, in subsection 1.1.2 we present a
number of natural language tasks that are addressed in this thesis, all of them
belonging to the CoNLL Shared Task Series, and all of them being particular
instances of the the general problem we address. In subsection 1.1.3, we pro-
vide a formal definition of the phrase recognition problem and the standard
method to evaluate a system. After that, in subsection 1.1.4 we discuss some
general characteristics of the tasks in NL that instantiate the phrase recognition
problem. Finally, we introduce the machine learning approach for these type of
tasks.

1.1.1 From Full to Partial Syntactic Parsing

During the 90’s, a number of statistical approaches applied to natural language
demonstrated that, to some extent, non-restricted automatic syntactic analysis
of language is possible. Part of the success can be attributed to the availabil-
ity of large-scale treebanks, that is, resources containing a large collection of
sentences annotated with syntactic structure (e.g., Brown Corpus and Penn
Treebank [Marcus et al., 1993], 3LB [Palomar et al., 2003], PropBank [Palmer
et al., 2005]). The annotation scheme of such resources, defining which linguis-
tic elements and syntactic relations and dependencies are annotated, is usually
fine-grained. To some extent, the annotations unambiguously and consistently
represent all behaviors that syntactic elements of natural language exhibit in
the treebank. With this, many statistical methods have been developed for
the full parsing task, the problem of associating sentences with their syntactic
tree. Broadly, probabilistic full parsers consist of fine-grained parametric lan-
guage models which associate probabilities to trees, relying on a grammar of the
language that is assumed to generate such syntactic trees and sentences. The
parameters of the model are estimated from data, in particular from the large
collection of sentence-tree pairs of the treebank. To date, the best state-of-the-
art statistical full parsers working on the standard Wall Street Journal (WSJ)
data achieve results slightly below 90% of accuracy [Collins, 1999; Charniak,
2000].

Current natural language applications make use of much less analysis than
the one annotated in treebanks. For instance, a question-answering application
—as a complex application of interest in the NL community– makes use of many
different types of analysis, each of which is much simpler than a full syntactic
tree. Typical modules are syntactic part-of-speech taggers and chunkers, named
entity recognizers, semantic disambiguators, analyzers of the relations expressed
in verbs, etc. The question-answering system makes use of the output of each
one to make inferences that answer a posed question.

Therefore, in recent years there has been a lot of interest on the design of
learning systems which perform only a partial analysis of the sentence [Abney,

14 Introduction

1991, 1996b; Hammerton et al., 2002]. In contrast with tasks that reveal a full
analysis, partial tasks are characterized by much coarser annotation schemes.
The corresponding analysis does not identify and disambiguate all linguistic el-
ements of a sentence, but only those specific to the task. Thus, partial tasks are
much simpler than full tasks (for example, the cardinality of the output space
is much lower) and, consequently, the resulting systems are much simpler and
faster than those performing a full analysis of the sentence. This property has
facilitated the use of general machine learning for partial tasks. Here, instead of
designing a fine-grained, linguistically-motivated statistical model, the approach
relies on reducing the problem to classification subproblems, and learn powerful
classifiers that assign labels to the linguistic elements of interest. To predict
such labels, classifiers operate in high-dimensional spaces of propositional fea-
tures that represent linguistic elements and their relations, possibly with many
different sources of information. This flexibility in representation constitutes
an attractive property of classification-based techniques, in contrast to tradi-
tional probabilistic approaches that impose strong conditions on the type of
representations.

So, the general problem of analyzing natural language presents a trade-off
on how to approach it. Focusing on syntactic analysis, one can think of a single
complex task which disambiguates all syntactic elements of a sentence. On the
other hand, one can break a full analysis into many intermediate steps or layers,
define and learn a partial analyzer for each layer, and chain partial analyzers
in a pipeline to obtain incrementally the full analysis. An advantage of the full
approach is that the dependencies between syntactic elements at different levels
can be exploited within the same task. However, it is generally accepted that a
complete syntactic disambiguation cannot be performed isolatedly of other lin-
guistic knowledge, such as the semantics of syntactic constituents and of their
relations, but rather at the same time. In contrast, the partial approach allows
to build the structure at each layer taking into account different annotations
of earlier analysis, and incorporating knowledge resources specific to each layer
(e.g., dictionaries, semantic taxonomies, etc.). A crucial aspect, then, is how
to break down the whole analysis process into many partial tasks, and which
dependencies are established between tasks. To succeed, each layer of partial
analysis must be simple enough to be resolved independently of higher-levels of
analysis, and accurate enough to permit further processing depending on it. If
this is possible, the general scheme for language analysis can be resolved with a
simple pipeline which chains the partial processors from lower to higher levels,
each benefiting from the structures recognized at lower levels. In practice, it
is not possible to resolve any natural language task with no error, and it has
been shown in many experimentations that errors committed in early layers
substantially degrade the performance of later layers. Thus, to overcome error
propagation through a pipeline of processors, one can think of a flexible archi-
tecture for analyzing language. Here, several different types of analyzers detect
partial structures on a sentence, and assign meanings to them. Above them, a
reasoning process induces a global analysis for the sentence, taking into account
dependencies and constraints over different types and levels of partial structures

1.1 The Phrase Recognition Problem 15

to form a global one.

In the context of syntactic parsing, up to date full approaches show superi-
ority over partial approaches. First, a full analysis is typically richer than the
result of several layers of partial processing, since partial approaches often con-
sider only the main elements of a syntactic structure, and discard intermediate
constituents of the structure to simplify the problem. Second, in terms of re-
sults, full parsers perform better in the context of general syntactic analysis. So,
a full analysis is richer and more accurate than a few layers of partial analysis.
However, empirical evidence has been found in favor of machine learning ap-
proaches detecting the basic syntactic chunks of a sentence. Their performance,
focusing only on the basic analysis, is better than that of statistical full parsers
[Li and Roth, 2001]. Nowadays, the study of learning algorithms for higher
levels of analysis constitutes an active direction of research in natural language
tagging and parsing, and machine learning. A complementary research direction
concerns the semantic analysis of a sentence. The complexity of the semantic
meanings of words and, more importantly, the relations between them, consti-
tutes a challenging aspect of language understanding in which, clearly, learning
takes an important role. Currently, semantic analyzers are not yet accurate and
stable enough to take part in a global interdependent analysis.

This thesis takes a machine learning approach to resolve partial analysis
tasks, at different levels of analysis. The aim is to study mechanisms for rec-
ognizing phrase structures in a sentence. We concentrate on techniques for
solving a single problem. In particular, in Chapter 3 we propose a framework
to recognize phrases in a sentence, based on learning and incremental inference
techniques. We study strategies that go from simple to complex, and experi-
ment with partial parsing tasks of different characteristics. Out of the scope
of this thesis are the mechanisms to integrate many different partial analyzers
into a global analysis process. However, the tasks we experiment with can be
pipelined to resolve a coarse-grained syntactic analysis of the sentence. Next
section explains these tasks.

1.1.2 Phrase Recognition in CoNLL Shared Task Series

Since 1999, the Conference on Natural Language Learning (CoNLL) organizes
each year a Shared Task 1. Each edition proposes a natural language problem to
be solved with learning techniques, with the aim of comparing different learning
approaches in a common problem setting. For a problem, training and test
data derived from existing corpora are prepared and made public to develop
systems. Then, systems can be compared by contrasting their approach with
the evaluation measures they obtain on the test set.

An attractive aspect of the CoNLL Shared Task series is that the addressed
problems can be thought as a decomposition of the basic syntactico-semantic
analysis of language into many separate tasks, each building on the analysis
achieved in the previous task. Thus, by chaining in a pipeline a processor of

1See CoNLL website at: http://www.cnts.ua.ac.be/conll

16 Introduction

each task, one obtains a basic language analyzer that is useful for building
language applications.

In this thesis, we concentrate on the following tasks for the experimental
evaluation. Chapter 5 is devoted to describe systems these tasks. It is assumed
that the pipeline starts with a part-of-speech tagging process, that assigns to
each word of a given sentence its part-of-speech tag. Then, three phrase recog-
nition tasks are applied, layered in the following order:

Syntactic Chunking

Shallow Syntactic Parsing is the problem of recognizing syntactic base phrases
in a sentence. Base phrases are syntactic phrases which do not contain any
other phrase in within, that is, they are non-recursive. Such base phrases are
also known as chunks, so the task is often referred to as Syntactic Chunking.
Syntactically, words within a chunk act as a unit in a syntactic relation of a
sentence. The chunking of a sentence (i.e., the set of chunks) constitutes the
first syntactic generalization of the sentence. In the following examples, chunks
are represented in brackets, with the label of the chunk as a subscript of the
closing bracket:

(The San Francisco Examiner)NP (issued)VP (a special edition)NP
(around)PP (noon)NP (yesterday)NP (that)NP (was filled)VP (entirely)ADVP
(with)PP (earthquake news and information)NP .

Here, NP stands for noun phrase, VP for verb phrase, PP for prepositional phrase,
and ADVP for adverbial phrase.

This task was addressed in CoNLL-2000 [Tjong Kim Sang and Buchholz,
2000]. Eleven types of syntactic chunks were considered, and data was derived
from the Wall Street Journal portion of the Penn Treebank (WSJ) [Marcus
et al., 1993]. The task generalizes the one of the 1999 edition, concerning the
recognition of basic noun phrases, that in turn reproduced the problem proposed
by Ramshaw and Marcus [1995].

The particular setting of this task, together with the public datasets, has
become a benchmark for evaluation of shallow parsing systems. Within the
machine learning community, this task is also an attractive problem for testing
sequential learning algorithms.

Clause Identification

This task consists of recognizing the syntactic clauses of a sentence. Clauses can
be roughly defined as sequences of words with a verb and a subject, possibly
implicit. The main challenge of this task is that clauses form a hierarchical
structure in a sentence, thus the task cannot be directly approached with se-
quential learning techniques, as in chunking. In a sentence, the hierarchical
clause structure forms the skeleton of the full syntactic tree. In the example
below, clauses are enclosed within brackets:

1.1 The Phrase Recognition Problem 17

(The San Francisco Examiner issued a special edition around noon yesterday
(that (was filled entirely with earthquake news and information)S)S .)S

This task was addressed in CoNLL-2001 [Tjong Kim Sang and Déjean, 2001],
and data was derived from the WSJ corpus, as in syntactic chunking. All clauses
were labeled the same type (S), so in the data there is no differentiation among
different types of clauses (e.g., main clause, relative clause, etc.).

Semantic Role Labeling

In this problem, the goal is to recognize the arguments of the predicates in a
sentence. Arguments are phrases in the sentence which play a relation with a
predicate of the sentence. This relation is called a semantic role. The PropBank
corpus [Palmer et al., 2005] defines what semantic roles accepts each verb in
English, and annotates the predicate-argument relations of the verbs in the WSJ
corpus with their semantic role. In a sentence, each verb has a set of labeled
arguments. For the example sentence, the arguments of the verb “issue” are:

(The San Francisco Examiner)A0 (issued)V (a special edition)A1 (around
noon)TMP (yesterday)TMP (that was filled entirely with earthquake news and
information)C−A1 .

According to PropBank, A0 is the issuer of the verb predicate “issue”, and A1 is
the thing issued (in the example, this argument is broken down into two pieces,
the second annotated as C-A1). V stands for the verb, and TMP is a general
modifier expressing a temporal relation. For the verb “fill” the arguments are:

The San Francisco Examiner issued (a special edition)A1 around noon yes-
terday (that)R−A1 was (filled)V (entirely)MNR with (earthquake news and
information)A2 .

A1 is the destination, R-A1 is a referent to A1, and A2 is the theme. MNR stands
for a general modifier expressing a manner relation.

In this thesis, we frame all these tasks under the general problem of recog-
nizing phrases in a sentence. The difference between tasks relies then on the
nature of the phrases, the scheme of phrase labels and the type of structures
that phrases form in a sentence (i.e., shallow phrases or phrase hierarchies).

Apart from these tasks, another task that can be directly casted as a phrase
recognition problem is Named Entity Extraction. This task consists of recog-
nizing the named entities in a sentence and classify them according to their
type. For instance, in the above example sentence, “San Francisco Examiner”
is a named entity, denoting an organization. This problem was addressed in
two editions of the CoNLL Shared Task, namely for Spanish and Dutch in 2002
[Tjong Kim Sang, 2002a], and for English and German in 2003 [Tjong Kim Sang
and De Meulder, 2003]. While throughout the thesis we mention this problem,
for conciseness we do not present experiments on it.

18 Introduction

1.1.3 Problem Definition and Evaluation

In this section we give a definition of the general problem discussed in this thesis,
in the context of a supervised learning problem, and we describe the standard
evaluation method of a system.

Let X be the space of sentences of a language. Let Y be the space of phrase
structures for sentences. In particular, an element y ∈ Y is a set of phrases that
constitute a well-formed phrase structure (i.e., the phrases in y form a sequence
or a hierarchy of phrases).

Given a training set S = {(x1, y1), . . . , (xm, ym)}, where xi are sentences in
X and yi are phrase structures in Y, the goal is to learn a function R : X → Y
which correctly recognizes phrases on unseen sentences.

In order to evaluate a phrase recognition system, the standard measures
for recognition tasks are used: precision, recall and Fβ=1. Precision (p) is the
proportion of recognized phrases that are correct. Recall (r) is the proportion
of solution phrases that are correctly recognized. Finally, their harmonic mean,
Fβ=1, is taken as the standard performance measure to compare systems.

We consider that a predicted phrase is correctly recognized if it matches
exactly a correct phrase. That is, the words that the phrase spans and the
phrase label have to be correct. This criterion makes the evaluation of a system
strict. In contrast, there are softer criterions that consider that a phrase is
correctly recognized if the important words of it match the important words of
a correct phrase (e.g., in standard evaluation of full parsers, punctuation tokens
are not considered).

Recall that a solution y is a set, so the intersection with another solution y′

gives the set of phrases that are in both sets, with exact matching. Let | · | be
the number of elements in a set. The computation of the evaluation measures
in a test set {(xi, yi)}l

1 can be expressed as follows:

p =

∑l
i=1 |y

i ∩ R(xi)|
∑l

i=1 |R(xi)|
r =

∑l
i=1 |y

i ∩ R(xi)|
∑l

i=1 |y
i|

Fβ=1 =
2 p r

p + r

1.1.4 Generalities

In general, the goal of the tasks we focus on is to recognize a set of phrases
in a sentence, organized in a structure. Here we characterize different tasks of
phrase recognition.

Origin

Phrase recognition tasks arise in the NLP area with two different motivations.
First, the syntactic analysis problem can be approached as a full task or be
broken down into many separate tasks, each focusing on a part of the general
structure. Full parsing can be seen as a phrase recognition task, in which phrases
correspond to nodes of the full syntactic tree. However, this thesis focuses on
partial parsing tasks, where the structures are much simpler than syntactic trees.

1.1 The Phrase Recognition Problem 19

Typical partial syntactic tasks are noun phrase recognition, shallow parsing,
prepositional phrase attachment or clause identification. In a sentence, each of
the phrase structures detected in these tasks corresponds to a piece of the full
syntactic tree.

Second, language applications often look for specific information in text,
and consequently define tasks in which the goal is to recognize phrase struc-
tures containing such information. For instance, current text-retrieval, question-
answering or summarization systems make use of named entity extractors, which
detect and classify phrases in text denoting a named entity. In the most general
case, a named entity can be a complex structure formed of basic named entities
and other words. For example, Goldsboro Express is a named entity denoting a
particular train related to a place named Goldsboro. Or, The Complete Prestige
Recordings of John Coltrane denotes the title of a music compilation, and there
are in within two related named entities, namely a company (Prestige) and a
person (John Coltrane). Regardless of their complexity, named entity structures
appear in specific parts of a sentence, and constitute only a piece of the global
structure representing syntactico-semantically a sentence.

Complexity of Phrase Structures

Different tasks can be grouped according to properties of the phrase structures
that are to be recognized. Structurally, the most simple task is to recognize
basic phrases that do not contain other phrases in within. This problem is
usually known as shallow analysis or chunking, since non-recursive phrases are
often called chunks. The resulting phrase structure in a sentence is a sequence
of phrases. Tasks in this category include syntactic chunking, or named entity
extraction in its simpler and most typical setting —where the goal is to recognize
maximal named entities, without considering their internal structure. Also,
recognizing arguments of a predicate in a sentence can be modeled as a chunking
task, where each chunk is an argument that plays some semantic role in the
predicate.

A more complex level of tasks is found when phrases admit embedding,
usually under a recursive pattern. In this case, related phrases form trees and,
in general, the phrase structure of a sentence is a forest of phrase hierarchies.
A particular case is that of full parsing, where the structure is the syntactic
tree of the sentence. Other hierarchical phrase recognition tasks are syntactic
clause identification, or general versions of noun phrase recognition –recognizing
structures of base noun phrases together with their modifiers, as in (a cup (of
coffee))– or named entity extraction –unraveling the internal structure of named
entities, as in ((United Nations) Headquarters).

Sparseness of Phrase Structures

A different dimension for characterizing phrase structures –and their correspond-
ing problems– is the sparseness of phrases in a sentence, that is, whether most
of the words are covered by the phrase structure or not. For example, in shallow

20 Introduction

syntactic parsing the task may be to recognize a particular base chunk, such as
noun or verb phrases, resulting in specific phrase structures which do not cover
completely the level of analysis. On the other side, the task may be to recognize
all base syntactic chunks of the sentence. In this case, except for punctua-
tion and other functional tokens, all words in the sentence belong to some base
chunk, and the resulting phrase structure completes the shallow level of syntac-
tic analysis. Recognizing all chunks together will allow to take advantage of the
dependencies between chunks and to ensure coherence of the shallow analysis.
In the syntactic domain, clause hierarchies or predicate-argument constructs are
also partial syntactic structures which complete a piece of the global sentence
analysis. In contrast, named entities appear in text sparsely. A sentence might
contain no named entities or a few of them. And, in the context of a sentence,
two named entities cannot be related without looking at some other piece of
the sentence analysis, such as a verb expressing a relation between them, as in
Peter goes to Japan.

1.1.5 The Machine Learning Approach

Simple phrase recognition tasks, where the goal is to recognize non-recursive
phrases with little dependencies among them, facilitate the use of general ma-
chine learning algorithms. The approach consists of reducing the global task
of recognizing phrases to local classification subproblems, and learn a classifier
for each of the subproblems using machine learning. Typical local subproblems
include learning whether a word opens, closes, or is inside a phrase of some
type. Recognizing phrases, then, consists of exploring the words of a sentence
and apply classifications to them, while combining the outcome of the classifica-
tions to build the phrases of the sentence. Usually, not all combinations of the
classifiers’ outcomes are possible. For example, a word cannot be inside a cer-
tain phrase if such phrase has not been opened in some preceding word. Thus,
the exploration strategy not only visits words of a sentence to classify them,
but also checks that the classifications form coherent phrases in a sentence. In
simple phrase recognition tasks, many state-of-the-art systems rely on powerful
learning algorithms which provide accurate classifiers. Then, the exploration
strategy is usually greedy at ensuring coherence, in that a classification in a cer-
tain word is assumed to be correct, and then future classifications which would
produce incoherence are not considered.

As the complexity of phrase structures increases, and it is accepted that
learned predictors are not error-free, it seems adequate to design exploration
strategies that are more robust to local prediction errors than simple greedy
strategies. In general, the learning components of a phrase recognition system
compute different local predictions at different parts of the sentence. It is always
possible to express that a combination of predictions forms a coherent phrase
structure with constraints over different predictions. Thus, given a phrase recog-
nition task decomposed into many local learning problems, and given learned
local predictors, recognizing phrases in a sentence consists of finding the best
combination of local predictions that satisfies the constraints. This way, the

1.2 This Thesis 21

general approach is not only an exploration of a sentence to compute predic-
tions, but rather a powerful inference process to find the best global coherent
assignment given the local predictions [Roth and Yih, 2004]. The phrase recog-
nition architecture can be divided into two layers: first, a learning layer, where
local predictions are computed independently; then, an inference layer, which
selects the best phrase structure considering both the local predictions and the
structural properties of the solution, expressed in the constraints.

Still, in some tasks the phrases in a structure exhibit many dependencies
between them. For example, in the hierarchy of syntactic clauses of a sentence,
top-level clauses group low-level simple clauses to form a complex sentence. In
these domains, thus, it seems desirable that some predictions take into account
part of the phrase structure that is being recognized. This idea motivates a third
paradigm for phrase recognition task, that of combining learning and inference
in both directions. While in the previous paradigm inference was on the top of
learners, here learners will depend on inference, and vice-versa, since a certain
prediction in a part of the sentence will benefit of the structure recognized in
other parts of the sentence. As it will be shown, the type of learning here is
global, in that it considers the global inference strategy to train the prediction
functions. Actually, this paradigm corresponds to the standard approach in
generative probabilistic models, such as HMM or PCFG. In these approaches,
a certain model makes use of several interdependent probabilistic distributions
estimated from data, corresponding to learners. Inference consists of finding
the solution with highest probability, and, when searching for it, dependencies
of the model are taken into account. However, discriminative learning seems to
be advantageous over generative learning, because it offers flexibility in terms
of feature representations and theoretical guarantees on generalization. In this
direction, the paradigm of globally training learners with respect to inference
has been recently proposed in the literature for discriminative learners [Collins,
2004].

This thesis studies phrase recognition architectures, focusing on discrimina-
tive learning methods, inference strategies, and their interaction. We present
different architectures and experiment with them in the context of the tasks
presented in Section 1.1.2.

1.2 This Thesis

1.2.1 Contributions

The research work presented in this thesis can be framed in the field of Natural
Language Learning, which is the field devoted to study approaches that place
machine learning as the central mechanism to understand and process natural
language. As the name suggests, the field of Natural Language Learning borrows
theories and problems from the area of Natural Language Processing, while
concentrates on the results and techniques of the Machine Learning community
to make them applicable to the Natural Language domain.

22 Introduction

The specific field we focus on is that of designing supervised learning systems
for complex problems that arise when analyzing natural language. In particular,
we study and propose methods that learn to recognize phrases in a sentence.
Below, we overview the three major contributions of this thesis.

A Framework for Phrase Recognition

This thesis develops a framework for phrase recognition problems oriented to
approaches based on discriminative learning, and inference mechanisms to deal
with structured data. The starting point is the formalization of the general
problem. In particular, the goal in a phrase recognition problem is to recognize
in a sentence a structure of labeled phrases. Here, the basic element is a phrase,
defined as a sequence of contiguous words which, together, assume some func-
tionality in the sentence analysis. Such functionality is expressed by the label
of the phrase. Then, the framework considers two types of phrase structures,
which result in two particularizations of the general problem. The first is that
of chunking, where phrases form a non-overlapping sequential structure in the
sentence. Instances of this problem include shallow syntactic analysis, named
entity extraction, or recognition of the semantic roles of a sentence predicate.
The second problem, more general, consists of recognizing hierarchical phrase
structures, that is, structures of phrases that form a tree or a forest in the sen-
tence. This problem instantiates on tasks such as the identification of syntactic
clauses, more general versions of the above-mentioned problems, and, in general,
syntactic parsing tasks.

The framework develops techniques for phrase recognition architectures that
make use of two central mechanisms: learning and inference. Learning serves
to predict which words of a sentence form phrases. Inference combines the
outcome of learning predictors to form a structure of phrases for the sentence,
with two main concerns: efficiency and coherence of the phrase structure. In the
framework, a phrase recognition architecture consists of three main components:

• Model. We discuss models that decompose the global problem into many
decisions, at two different granularities, which are directly solved with
learning techniques. The first is at word-level, which is the traditional
approach of phrase recognition systems. The second is at phrase level,
that puts learning in a context more expressive than word-level models,
but also computationally more expensive.

• Inference strategy. We comment on inference algorithms for phrase recog-
nition models at word and phrase levels. In all cases, the type of inference
is incremental, that is, as the sentence is processed in some order, the
plausible solutions are built, incremented and contrasted between them,
so that when the final of the sentence is reached the best solution is ready.
We present instantiations of this general processing scheme that go from
approximate to exact strategies according to the model’s optimality crite-
rion.

1.2 This Thesis 23

• Learning strategy. We discuss discriminative strategies for learning the
predictors of a phrase recognition architecture. We focus on large margin
algorithms for training linear separators, and discuss the difference be-
tween learning each predictor locally, or learning globally all predictors of
the architecture.

Perceptron Learning for a Filtering-Ranking Architecture

As a main contribution, this thesis proposes a phrase recognition architecture,
which we name Filtering-Ranking, and a global learning strategy for it based on
Perceptron. This work is published in [Carreras et al., 2005] and, in turn, builds
on previous work [Carreras and Màrquez, 2003a,b; Carreras et al., 2002b].

The Filtering-Ranking architecture faces the general problem of recognizing
hierarchies of phrases, and can be particularized to look for sequential phrase
structures. The strategy for recognizing phrases in a sentence can be sketched
as follows. Given a sentence, learning is first applied at word level to identify
phrase candidates of the solution. Then, learning is applied at phrase level to
score phrase candidates and discriminate among competing ones. These two
layers of learning predictors are controlled by the inference strategy, that ex-
plores the sentence and computes predictions at different parts of it, with the
goal of building the optimal phrase structure for the sentence, according to the
predictions and other coherency criteria. In the architecture, the phrase–level
layer of predictors allows to deal with complete candidate phrases and partially
constructed phrase structures. An advantage of working at this level is that rich
and informed feature representations can be used to exploit structural properties
of the examples, possibly through the use of kernel functions. However, a disad-
vantage of working with high level constructs is that the number of candidates
to explore increases and the search space may become prohibitively expensive
to explore. For this reason, the word–level layer of our architecture plays a
crucial role by filtering out non plausible phrase candidates and thus reducing
the search space in which the high–level layer operates.

We then propose the FR-Perceptron learning algorithm to globally train the
learning functions of the system as linear separators, all in one go. The learning
strategy is a generalization of Perceptron that follows [Collins, 2002] in two
main aspects. First, it works online at sentence level: when visiting a sentence,
the functions being trained are first used to recognize the set of phrases in it,
and then updated according to the correctness of the solution. Second, the type
of update is conservative since it operates only on the mistakes of the global
solution. The proposed algorithm extends Collins’ in that not only it trains a
score function for ranking potential output labelings, but also trains the filtering
component which provides candidates to the ranker. The extension is in terms
of the feedback rule for the Perceptron, which reflects to each individual function
its committed errors when recognizing a set of phrases. As a result, the learned
functions are automatically approximated to behave as word filters and phrase
rankers, and thus, become adapted to the recognition strategy.

Regarding the analysis of the algorithm a convergence proof is presented.

24 Introduction

Regarding the empirical study, we provide extensive experimentation on two
relevant problems of the Partial Parsing domain, namely base Chunking and
Clause Identification. Moreover, we incorporate, in the experimental architec-
ture, the results of Freund and Schapire [1999] on Voted Perceptrons to pro-
duce robust predictions and allow the use of kernel functions. The performance
achieved by the presented learning architecture is comparable to the state–of–
the–art systems on base chunking and substantially better in the recognition
of clauses. Besides, the experiments presented help understanding the behav-
ior of the different components of the architecture and give evidence about its
advantages compared to other standard alternative learning strategies.

State-of-the-art results in CoNLL Shared Tasks

A central goal of this thesis research is to build competitive systems for the
yearly-organized Shared Tasks of the CoNLL conference, which we view as
phrase recognition problems. Namely, these tasks include Shallow Syntactic
Parsing [Tjong Kim Sang and Buchholz, 2000], Clause Identification [Tjong
Kim Sang and Déjean, 2001], Named Entity Extraction [Tjong Kim Sang, 2002a;
Tjong Kim Sang and De Meulder, 2003] and Semantic Role Labeling [Carreras
and Màrquez, 2004]. The series of CoNLL Shared Tasks are an interesting and
motivating initiative of the Natural Language Learning community, since they
propose relevant, real-sized Natural Language problems, and establish experi-
mental settings that permit fair comparisons of systems implementing different
learning approaches. In particular, all systems are developed under the same
task specification and training data, and evaluated with standard performance
measures on the same test data. Thus, systems can be ranked according to
their final performance, and conclusions can be drawn about what elements
influenced the good or bad performance of different approaches. In general,
building a competitive system concerns issues related to: (1) the type of ar-
chitecture and model for recognizing phrases; (2) the learning algorithm used
to train the learning functions of the architecture; (3) the type of features for
representing the data; and (4) practical techniques and tricks to develop and
tune a learning system for a real-sized natural language problem.

Under an unified framework, we have developed systems that perform among
the best at each edition, and thus can be considered in the state–of–the–art. For
Shallow Syntactic Parsing, the task with more evaluated systems, our system
obtains results that are very close to the top-performing system. On Clause
Identification, our system is substantially better than any other system. For
Named Entity Extraction (on 4 languages) and Semantic Role Labeling, our
systems are among the top-performing ones.

1.2.2 Organization

The rest of the thesis is organized in the following chapters.

• Chapter 2. A Review of Supervised Natural Language Learning
We review the major approaches to natural language disambiguation prob-

1.2 This Thesis 25

lems with supervised machine learning, focusing on discriminative learning
and large margin learning algorithms, as they are the techniques used in
this thesis. We also review the relevant literature on shallow and partial
parsing systems.

• Chapter 3. A Framework for Phrase Recognition
This chapter describes the framework to design phrase recognition sys-
tems. We comment on the major components of a learning-based phrase
recognition architecture, namely the model, the inference algorithm, and
the learning strategy. We propose a variety of options for each one, and
discuss instantiations of phrase recognition architectures that go from sim-
ple to more complex.

• Chapter 4. A Filtering-Ranking Learning Architecture
This chapter presents the main contribution of this thesis, namely a filtering-
ranking learning architecture for general phrase recognition problems.
First, we describe the architecture. Then, we propose a Perceptron algo-
rithm to train it globally, with analysis on its convergence, and extensive
empirical experimentation that evinces its good performance.

• Chapter 5. A Pipeline of Systems for Syntactic-Semantic Pars-
ing
In this chapter, we develop Natural Language analyzers for three CoNLL
Shared Tasks, using the filtering-ranking learning architecture. We con-
trast our systems, in terms of results, with other systems in the literature
developed for the same tasks, and show that the performance of our sys-
tems is among the best in the state-of-the-art.

• Chapter 6. Conclusion
This chapter gives conclusions and outlines future research directions.

How to read this document. The main contribution of this thesis is found
in Chapter 4, that presents the filtering-ranking learning architecture and the
Perceptron-based global algorithm for it. This chapter is mostly self-contained
and, in fact, it is essentially the main part of the article published in [Carreras
et al., 2005]. Readers who are familiar with machine learning and partial parsing
techniques should be able to read straightforwardly the chapter.

For readers not familiar with these topics, Chapter 2 introduces machine
learning techniques for disambiguating language. We contextualize and discuss
the type of learning that we use. We also comment on partial parsing techniques
and systems of the literature that are relevant to the area and influence our work.

Chapter 3 presents a framework for partial parsing and other phrase recogni-
tion problems. Essentially, the phrase recognition problem is studied in formal
way, identifying the major computational difficulties and discussing a family of
techniques to solve it with discriminative learning. The filtering-ranking archi-
tecture proposed later in Chapter 4 can be thought as a particular choice within
this family of phrase recognition methods.

26 Introduction

Chapter 5 provides a practical description about building partial parsers
for natural language processing, for three different tasks. We comment on fi-
nal adaptations of the general model, features used by the learners, training
processes, and evaluation results.

Chapter 2

A Review of Supervised
Natural Language Learning

This chapter reviews the main concepts and approaches of the areas of Machine
Learning (ML) and Natural Language (NL) processing that serve as basis of the
work presented in this thesis.

The chapter is organized in three sections. The first section introduces super-
vised machine learning techniques which apply to natural language disambigua-
tion problems, focusing on approaches for dealing with structured domains, as
is the case for the problems discussed in this thesis. The second section re-
views the specific type of learning algorithms that are used, a family known as
large margin methods. We introduce the main theoretical concepts that serve
as starting point for the design and justification of the methods, and review
the main algorithms. Finally, the last section reviews techniques and systems
for shallow and partial parsing, which is the specific type of NL problems we
concentrate on.

2.1 Learning to Disambiguate in Natural Lan-
guage

In this section we review machine learning techniques for natural language dis-
ambiguation tasks, focusing on supervised methods which apply to phrase recog-
nition tasks and other more general problems.

A natural language disambiguation problem can be thought as inducing a
function h : X → Y. In the problems discussed in this thesis (and in most
NL disambiguation problems), X is the space of all sentences of language. But
in general X could be a space representing words, sentences, documents, or
other textual domains. As for the output space, we can differentiate between
classification problems and structured problems. In classification problems, Y
is fixed set of labels. For example, Y might be the set of possible part-of-speech

28 A Review of Supervised Natural Language Learning

tags of a language, and the associated task is to determine the tag in Y that a
given word assumes in a sentence. Other examples of pure NL classification tasks
include Word Sense Disambiguation —consisting of assigning the appropriate
semantic label for a word in a sentence—, Spelling Correction —the task of
fixing spelling errors, by classifying a certain string into the possible legitimate
words of the language— or Text Categorization —where the goal is to identify
the topic categories of a document.

In structured problems, the elements of the output space Y are structures
such as sequences, trees or, in general, graphs. Such structures are labeled, in
that each of the nodes forming the structure have a label that denotes the nature
of the constituent represented by the node. In most of these problems, X is the
space of sentences, so the problem is to induce a function mapping sequences
of words (i.e., sentences) to labeled sequences or trees. For example, let T be
the set of part-of-speech tags of a language, and Y be the space of sequences
formed with tags in T . A sequential classification problem is that of determining
the sequence of part-of-speech tags for each word of a given sentence —which
corresponds to the standard problem known as Part-of-Speech (PoS) tagging.
Another instance of structured-output problems is that of syntactic parsing,
where the goal is to disambiguate the syntactic tree of a sentence (i.e., Y the
space of all possible syntactic trees). Closely related, in the problems discussed
in this thesis Y is the set of all possible phrase structures for sentences, either
sequential or hierarchical. Structured output domains exhibit two particular
properties. First, the cardinality of the output spaces is of exponential size with
respect to the length of an input sentence. Second, two different structures of
Y can be very similar, while others can be radically different. For example, two
trees can differ only in one node’s label. These properties are crucial for the
design of appropriate disambiguation learning techniques.

In supervised learning, the learning protocol is the following. It is assumed
the existence of a distribution D over X × Y that is unknown, but generates
a collection of training examples, independently and identically distributed.1

Each example is of the form (xi, yi), with xi ∈ X and yi ∈ Y.

In this framework, the task of a learning algorithm is to induce, from the
training examples, a hypothesis h which predicts accurately the correct values
y ∈ Y for an instance x ∈ X . In order to evaluate the quality of a learned
function, an error function or loss function, denoted L(y, ŷ), measures the error
or cost of proposing the output ŷ when the correct output is y. In classification,
the most common error function is the 0-1 loss, which assigns a penalty of 1 when
the output is not correct (y 6= ŷ) and 0 when correct (y = ŷ). When dealing
with structures, however, it is more appropriate to consider error functions
based on the number of different nodes of the correct and predicted structures,
which yields error functions closely related to precision and recall measures.

1Note that since D is a joint distribution, it is possible to observe examples with different
y’s for the same x. While we assume that only one value of Y is correct for each instance of
X , a joint distribution of examples is useful to study a number of interesting issues out of the
scope of this thesis. For instance, noisy sources of examples, or inherently ambiguous instances
that have several correct solutions —the later specially suitable for processing language.

2.1 Learning to Disambiguate in Natural Language 29

Conceptually, the ultimate goal is to learn the best hypothesis, that minimizing
the true error over the complete distribution D. However, D is unknown, so,
in practice, a separate test set, assumed also to be drawn from D, is used to
measure the error of the learned function on the test examples.

In the following sections, we review three main families of machine learning
techniques for resolving NL ambiguities. First, we comment on probabilistic
learning, where hypothesis are probabilistic distributions of the data, trying to
estimate the densities of D in some way. The focus is to introduce the ap-
proach of generative models. Then, we review discriminative learning, the type
of learning that, up to date, provides the most powerful and general learning
algorithms. Finally, we discuss the learning and inference paradigm, a family
of methods for disambiguating in structured domains. As it will be clear, the
reviewed methods do not belong exclusively to the family of methods in which
we present them.

2.1.1 Probabilistic Learning

Probabilistic methods associate probabilities to input-output pairs of language
[Charniak, 1993]. If x ∈ X is an instance, and Y(x) are the possible output
values for x, probabilistic methods choose the value of Y(x) maximizing the
probability of it given x, that is h(x) = arg max Y(x) p(y|x). Generative models
estimate a joint probability distribution p(x, y) of the data, and are later used
for disambiguation via the Bayes rule to compute p(y|x). Modeling alternatives
exist to estimate directly the conditional distribution p(y|x).

Generative Models

Generative models define a probability distribution of the data parametrized
by a stochastic generation mechanism of the data. Under this mechanism, a
pair (x, y) is uniquely defined by its derivation, that is, the sequence of steps or
decisions taken for generating (x, y) in some canonical order. The probability
of a pair (x, y) is then the probability of chaining the corresponding steps in the
derivation. The model defines which steps are possible, and makes assumptions
on which elements of the x and y variables take part in a generation step. With
this, a probability distribution can be defined parametrically by associating
parameters to the decisions of a derivation. Broadly, parameters determine
the probability of each possible instantiation of each decision (i.e., an event),
and are estimated from data. In particular, each parameter is the conditional
probability the part of (x, y) generated in the step given a factored history of
the generation.

We now describe two generative models, Hidden Markov Models and Prob-
abilistic Context Free Grammars, which are standard models for tagging and
parsing problems.

Hidden Markov Models (HMM). A hidden Markov model is a standard
probabilistic model for language modeling and sequential disambiguation tasks

30 A Review of Supervised Natural Language Learning

(see [Rabiner, 1989] for a classic tutorial oriented to speech recognition). In a
tagging task, x is a sequence of tokens x1 · · ·xn and y is a sequence of tags
y1 · · · yn attached to x. An HMM is a stochastic finite-state automaton, gener-
ating sequences of tokens. To generate a sequence x, the process first chooses
an initial state, from which it emits the first token x1. Then, it transitions to
a new state, emitting the second token, and so on until a designated final state
is reached. Three probability distributions are involved in this process, namely
the initial state distribution p0(s), and two conditional distributions, the state
transition probability p(s′|s) from state s to s′, and the emission probability
p(x|s) of a token xi from a state s. There is a correspondence between the
states of the automaton and the possible labels, so knowing the states which
generated x determines y. A HMM defines a joint probability distribution of
input-output sequences, p(x,y), by means of the transition, emission and initial
state probabilities, estimated from data.

Thus, the assumptions in HMM dictate that a token depends only on the
state that generated it, and that a state is determined only by its previous state
in the process. For example, a trigram HMM part-of-speech tagger defines a
state for each combination of two part-of-speech tags 〈t−, t〉, where t is the tag
of the current word and t− is the tag of the previous word. The state-transition
distribution controls the probability of assigning the tag t+ to the following
word when the previous and current word are tagged with t− and t respectively,
with a parameter for every trigram 〈t−, t, t+〉 —hence the name of the tagger.
The emission distribution controls the probability of generating a word w given
the current and previous tags, with a parameter for every triple of two tags
and a word 〈t−, t, w〉. To disambiguate the labels of a given sequence x with a
trained HMM, the Viterbi algorithm finds the most probable sequence of states
(associated to labels) that generates x.

Probabilistic Context-Free Grammars (PCFG). PCFG models asso-
ciate probabilities to sentence-tree pairs (x, y). The sequence of decisions of
the generative mechanism is defined as the expansions of the grammar rules in
a derivation of the tree, under a fixed parsing strategy (e.g., top-down, left-most
derivations). Each rule has an associated probability, and the probability of a
(x, y) pair is the product of rule probabilities in the derivation of (x, y). In doing
so, the assumption in PCFG models is that generating the right-hand side of
a rule depends only on the left-hand side of the rule, that is, the non-terminal
being expanded. Given a PCFG, finding the most probable tree for a sentence
can be done in polynomial time with, e.g., the CKY algorithm [Charniak, 1993].
Modern statistical parsers, such as those with best results on the WSJ corpus
[Collins, 1999; Charniak, 2000], are PCFG models where the rules are lexical-
ized. That is, the non-terminals of the grammar are augmented with lexical
items and other information which can be considered linguistically relevant to
the generation process. For example, Collins [1999] proposes head-based PCFG
models, where the non-terminals are augmented with the lexical head governing
the non-terminal constituent. The expansion of a rule (i.e., generating the right

2.1 Learning to Disambiguate in Natural Language 31

part given the left part) is broken down into a number of steps. Broadly, first
the head non-terminal is chosen; then the head modifiers, to the left and to
the right of it, are selected sequentially, given the lexical head of the rule and
other information generated during the rule expansion. Lexicalization leads to
fine-grained PCFG models with a very large number of rules, with the advan-
tage that now the model is much more expressive, since the model parameters
capture dependencies between the lexical information of the left and right parts
of a rule.

Maximum Likelihood Estimates

A standard technique in parametric joint probabilistic models is to set the pa-
rameters to optimize the joint likelihood of the data. In this framework, the
goal is to estimate the unknown distribution D that generates the training and
test examples. A crucial assumption of the framework is that D belongs to the
class of distributions considered by the probabilistic model. That is, there is an
assignment of weights α to the model parameters for which the probability distri-
bution is D, pα(x, y) = D. Under this assumption, learning translates to finding
such optimal assignment. Bayesian learning suggests to fit parameters to maxi-
mize the joint likelihood of the training data, αjMLE = arg maxα

∑

i pα(xi, y, i).
It is well-known that under the assumption that D belongs to the class of para-
metric distributions of the model, maximum-likelihood values make the esti-
mated distribution converge to the natural distribution D, as the amount of
data goes to infinity.

It turns out that in history-based processes, such as HMM, PCFG and other
models, the maximum-likelihood estimates correspond to simple relative fre-
quencies of the decisions observed in the derivations of the training collection.
In particular, the weight for a parameter associated to an observation o given a
history h, p(o|h), is the fraction of training decisions with history h where o is
observed. Furthermore, there exist many smoothing techniques to robustly es-
timate parameters in the case data sparseness, that is, when some observations
occur infrequently in the training data and produce unreliable frequencies (e.g.,
see the empirical study of Chen and Goodman [1996] and their references).

A major limitation of maximum-likelihood estimation techniques (pointed
out by many authors [Johnson et al., 1999; Collins, 2004]), which apply either
to joint or conditional estimation, comes from the assumption that the true
distribution D is actually an instantiation of the class of probability distributions
parametrized by the model. Typical language disambiguation models, such
as generative models, make strong independence assumptions which clearly do
not hold in the natural data. In other words, the representation of input-
output pairs adopted by the model (in terms of features, in direct relation
with the model parameters) is very poor. This limitation conflicts with the
ability of linguists to describe language units in many different ways and sources
of information. Enriching a generative model to include more features in the
representation is a complex task, since the steps of a derivation have to be
redefined to generate the included features at some point. Indeed, features not

32 A Review of Supervised Natural Language Learning

tied to the derivations of solutions add dependencies in the model, and usually
make maximum likelihood estimation intractable.

Furthermore, apart from restricting to the model class of distributions, the
theoretical guarantees that maximum likelihood estimation converges to the true
distribution are asymptotic as the training size goes to infinity. Collins [2004]
gives more formal arguments to these limitations, and discusses the advantages
of distribution-free learning methods, that, as the name indicates, do not make
assumptions on the underlying real distribution of the data. Also, the theory
behind them provides strategies that benefit generalization to unseen data given
that the amount of actual training data is limited. Section 2.2.1 looks closer to
distribution-free learning.

Alternatives exist to model the conditional probability distribution of the
data, and choose the parameters that maximize the conditional likelihood of
the data [Johnson, 2001; Klein and Manning, 2002]. Here, estimation methods,
such as probability-based decision trees [Magerman, 1996], Maximum Entropy
estimation [Ratnaparkhi, 1998; McCallum et al., 2000] or Conditional Random
Fields [Lafferty et al., 2001], do not make strong independence assumptions,
and thus allow flexible representations where arbitrary features can be coded.
These estimation techniques are reviewed in the following section, as general
discriminative learning techniques.

2.1.2 Direct, Discriminative Learning

Discriminative learning solves the disambiguation learning problem directly,
learning a map from inputs in X to outputs in Y. This contrasts with genera-
tive or informative learning (see [Rubinstein and Hastie, 1997] for a comparison
between generative and discriminative paradigms), where the approach is to
learn the distribution generating X and Y, and then use it to disambiguate by
examining the value of Y that most probably was generated with a given input
x ∈ X . In probabilistic learning, generative methods estimate a joint proba-
bility distribution of the data, while discriminative methods estimate directly a
conditional probability distribution. The family of discriminative algorithms we
focus on moves away from estimating a (conditional) probability distribution.
Rather, the algorithms concentrate on learning the boundaries of the possible
disambiguation outputs.

The main concern in discriminative techniques is to learn accurate hypothe-
ses, considering the error function as the ultimate practical measure to optimize
when testing the hypothesis. In this framework, training data serves to discover
regularities in the data that might be useful in predicting the output variables
given the input variables. Since training and test examples are assumed to be
drawn from the same distribution, one hopes that a good predictor learned from
training data will perform also well on test data.

In the 90s, many general machine learning methods of the Artificial Intel-
ligence (AI) community [Mitchell, 1997] were successfully applied to natural
language problems that can be framed into classification tasks [Roth, 1998;
Daelemans et al., 1997]. Typical problems here include Word Sense Disam-

2.1 Learning to Disambiguate in Natural Language 33

biguation, Spelling Correction, Text Categorization, etc. In all cases, there is a
pre-specified scheme of classes or categories, and the problem consists of assign-
ing the most suitable class to a given instance (i.e., a word in context, sentence,
or document).

Broadly, the design of a learning system for such problems involves issues
concerning the representation of the input instances, the type of policy adopted
to predict the most suitable class, and the algorithm that learns a predictor
given a collection of training examples.

In terms of representation, the most common standard way is to represent
an instance with a collection of propositional features. These features capture
properties, attributes or characteristics of the instance, and their design depends
both on the domain of the data –in our case natural language– and the specific
task we are willing to resolve. From this point of view, x is represented as a
vector of features. Each coordinate in the vector corresponds to one feature,
and the value of the coordinate is the value of the feature for the instance. In
general, a feature set has to be expressive enough to characterize properly any
of the instances of the input space X , so that it is possible to learn a predictor
that discriminates correctly the output value of an instance x ∈ X by looking
only at the feature values of x.

As for the type of predictors and learners, there exist many options. Some of
the most popular classical AI methods include Decision Tree Learning, Decision
Lists, Memory-Based Learning and Nearest Neighbor classifiers, or Transforma-
tion Based Learning, among others. In the probabilistic family, the two most
common techniques are Maximum Entropy Estimation and Naive Bayes2 Fi-
nally, Artificial Neural Networks are also a common choice in NLP, although
as we explain below, recent research has populated the use of simpler learners
based on linear separators that optimize margins, resulting in algorithms such
as Perceptron, Winnow, Support Vector Machines, or related algorithms such
as AdaBoost.

With so many choices, it is desirable to understand the properties of the
different problems and algorithms. From a learning point of view, natural lan-
guage problems are characterized by feature spaces of very large dimensionality.
For example, to achieve reasonable expressiveness, it is common to consider one
or several dimensions for each word of the language, or even for combinations
of words. In such spaces, the representation of instances is very sparse, that is,
most of the features in the vector have a null value. For example, a represen-
tation where features are binary indicators usually have tens of thousands of
dimensions, but only a few hundred of them have a non-trivial value in a par-
ticular instance. On the other side, the size of a training collection varies from
problem to problem, and goes from just hundreds of examples, to tens or even
hundreds of thousands of examples. With these properties, a learning algorithm
for NLP has to be computationally efficient at dealing with big training sets of

2Naive Bayes is a generative classifier, not discriminative. In practice, however, it is suc-
cessfully used with representations in which features are not independent, and thus violate
the assumptions of the learner. In this sense, the learner is used in a direct discriminative
way, rather than aiming at estimating a generative model of the data. See Roth [1999].

34 A Review of Supervised Natural Language Learning

huge dimensionality, where instances occur sparsely. It has to be also robust at
dealing with irrelevant features.

It turns out that many of the cited learning algorithms, although being de-
signed from different ideas, operate with linear decision surfaces [Roth, 1998,
1999]. That is, the shape of a learned model is a linear separator in the represen-
tation space that discriminates between the positive and the negative instances
of the target concept. In other words, with linear separators the problem of not
producing errors translates to the problem of separating well between positive
and negative instances. Therefore, the difference between algorithms learning a
linear separator relies on the criteria for choosing a particular separator among
all possible separators. This observation facilitates the analysis of algorithms
under a unified framework, that of learning linear separators. In section 2.2.1 we
overview some theoretical concepts and results of this framework. Importantly,
these results translate into clues about the relevant quantities to optimize during
learning and, in turn, motivate algorithms such as Support Vector Machines,
AdaBoost, or the well-known Perceptron, the latter being the core algorithm
used in the systems that this thesis proposes.

2.1.3 Learning and Inference Paradigm

So far, we have over-viewed two families of supervised learning methods: genera-
tive learning –willing to explain the data– and discriminative learning –focusing
directly on differentiating what is correct and what is not.

The generative approach offers well-understood techniques for problems with
structured output –which is the case of the problem of recognizing phrase struc-
tures in sentences or, more generally, tagging and parsing problems. Examples
of such techniques are HMM or PCFG, discussed in Section 2.1.1, as well as
other more general graphical models [Jordan, 2004]. However, as it has been
pointed out, a major limitation of generative models comes from the fact that
features are tied to the derivations assumed to generate the data, which makes
it difficult to incorporate arbitrary and dependent features for supporting pre-
dictions.

On the other hand, discriminative learning imposes no conditions on the
features representing learning instances, thus offers flexibility at combining dif-
ferent, possibly dependent knowledge sources and characteristics of the data.
However, discriminative learning techniques are designed and analyzed as gen-
eral algorithms for classification problems. That is, the learning algorithms of
the machine learning community are developed to discriminate among a lim-
ited, fixed number of classes. When the nature of the problem has a structured,
exponential-sized output space, such as the sequential or hierarchical solutions
of tagging and parsing problems, these algorithms shall not be used “out of
the box”, for several related reasons. First, because most of the discriminative
methods rely on enumerating exhaustively all possible output values during
training and prediction. Obviously, this is not feasible for exponential-sized
output spaces. Even when the learning method is not sensitive to the num-
ber of output classes (such as, e.g., nearest neighbor learners), the learner will

2.1 Learning to Disambiguate in Natural Language 35

suffer from data sparseness, and will not be able to generalize. But, most im-
portantly, treating each possible output structure as an atomic class does not
reflect appropriately the nature of the structures: two different structures may
have a lot of substructure in common, and differ only in specific parts. Thus,
a structured-output space has to be compactly modeled, in a way that shared
substructure is factored in the model.

For these reasons, there is a need to combine the strength of discriminative
learning at arbitrarily representing instances with the strength of generative
learning at compactly representing solutions with factored models.

We refer to learning and inference as the paradigm of to study learning tech-
niques that apply to complex domains where: (1) a global complex prediction
is decomposed into many local simple predictions, and; (2) there are dependen-
cies and constraints that influence what combinations of local predictions form
a correct global prediction. As a simple example, consider the Part-of-Speech
(PoS) tagging problem, where the goal is to assign the correct PoS tag to each
word of a given sentence. Here, the global solution is the sequence of PoS tags
of a sentence, which can be computed by locally predicting a tag for each word.
Clearly, there exist dependencies between the tags of a sentence, such as that a
determiner often precedes a noun, or that usually a sentence contains at least
one verb. In such scenarios, we differentiate two processes. First, a learning-
based process, with learning functions as main components, that predicts values
to local parts of a sentence. Second, an inference process, with an exploration
algorithm as a main component, that combines local predictions to form a global
solution. When dependencies and constraints exist, the role of the inference is
to trade off values predicted at different positions to obtain a globally optimal
solution.

In fact, traditional generative models make use of such learning and inference
processes, the former to estimate the distribution generating the data, and the
later used to disambiguate the structure of a given sentence. As pointed out,
though, discriminatory models are currently preferred, and their design and
development constitutes nowadays an active research direction in areas that deal
with complex data, such as natural language processing, information retrieval,
computer vision or computational biology.

In the literature, Dietterich [2002] reviews a specific scenario of learning
and inference, that of supervised sequential learning, or tagging. The general
problem consists of assigning labels to the components of a sequence, such as in
PoS tagging. Below we describe in more detail families of inference algorithms
and the role of learning in such systems.

Chained Classifiers. A simple approach to apply general discriminative learn-
ing to structured domains consists of learning classifiers which assign values to
local parts. To predict the global structure of a sentence, the different parts
of a sentence are explored in some canonical order (e.g., from left to right in
sequences) and, at each part, the classifiers are used to assign the most plau-
sible value. In the recurrent version of the strategy –the most common one– a

36 A Review of Supervised Natural Language Learning

prediction in one part makes use of the values assigned in previous parts, thus
exploiting dependencies between neighboring output values.

Such a simple strategy is not able to trade off decisions at different points.
That is, the local predictions at one part are final in the solution, with no at-
tempt to globally optimize the outcome. Hence, the technique is merely an ex-
ploration, rather than an inference process. Despite this limitation, and maybe
for its simplicity, many systems in the literature make use of this strategy,
specially for problems with simple constraints and few dependencies and often
combined with powerful learning algorithms that commit few errors.

Probabilistic Inference. Probabilistic learning provides models for dealing
with structured domains that exploit dependencies between different parts of
a structure. In such models, the global (joint or conditional) probability dis-
tribution is decomposed into several local conditional probability distributions
that are estimated from data with Maximum Likelihood techniques. Once the
model is learned, there exist well-known inference algorithms for disambiguating
the structure of a given sentence. Several authors have proposed to estimate
the local conditional probabilities with probability-based machine learning al-
gorithms, which in general are more powerful than Maximum Likelihood esti-
mates. Some of the algorithms found in the literature are decision tree learning
[Magerman, 1996; Màrquez, 1999], maximum entropy estimation [Ratnaparkhi,
1998; McCallum et al., 2000], or Winnow-based learning [Punyakanok and Roth,
2001]. Assuming that the estimated probabilities constitute a well-formed dis-
tribution, the global model is a consistent probability distribution too, and
therefore the same inference algorithms can be used. For example, in the con-
text of HMM, Punyakanok and Roth [2001] use Winnow classifiers to learn the
conditional probabilities of states given observations, p(s|x). Via Bayes rule
and other transformations, this probability is transformed into p(x|s), which is
the distribution required by the HMM model to define the global distribution
p(x, s). The Viterbi algorithm can be applied to find the most probable state
sequence s given a sentence x. Due to the limitations in representation of a joint
probability model such as HMM, both McCallum et al. [2000] and Punyakanok
and Roth [2001] proposed to change the topology of the model to be a condi-
tional model p(s|x), which allows to make use of arbitrary representations of
the input sentence x. In both works, the equations of the model are essentially
the same, the difference being that McCallum et al. [2000] estimated the local
distribution p(s|x) with maximum entropy, while Punyakanok and Roth [2001]
used Winnow-based learning. Other variations of Markov models with classi-
fiers exist, which can be found in e.g., [Dietterich, 2002]. Conditional Random
Fields [Lafferty et al., 2001] fall also into the category of probabilistic models
making use of inference to disambiguate. Below we give more details on it.

Constraint Satisfaction Inference. From the traditional Artificial Intel-
ligence perspective, the learning and inference problem can be framed as a
constraint satisfaction problem. Here, the problem consists of making a global

2.1 Learning to Disambiguate in Natural Language 37

assignment to a related set of individual local variables, and there are con-
straints that restrict what combinations of local assignments are possible. In
the soft version of the problem, the local assignments have a cost, and there is
a global optimality criterion which reflects which global assignment satisfying
the constraints is better. In this context, learning serves to predict the cost
of local assignments and, after appropriately modeling the constraints and the
objective function for a problem, constraint satisfaction schemes can be used
to infer the optimal global solution. Yet, it is well-known that the general con-
straint satisfaction problem is NP-hard. However, depending on the type of
constraints there exist efficient polynomial-time algorithms, that provide ap-
proximate or even optimal solutions. In this direction, Padró [1997] used the
relaxation labeling algorithm for PoS tagging, with the aim of combining several
knowledge-based and statistical language models. Punyakanok and Roth [2001]
reduced the sequential phrase recognition problem to the shortest path algo-
rithm for directed graphs. In a more general framework, Roth and Yih [2004]
propose a constraint satisfaction inference scheme based on integer linear pro-
gramming, which allows general constraints that cannot be expressed in other
inference paradigms such as that of probabilistic models.

Local vs. Global Learning. Systems based on inference with learned pre-
dictors can be categorized in two frameworks, namely local or global learning.
In the local approach, each predictor is trained independently of the others,
without considering the constraints and the interactions that take place in the
inference process to disambiguate the structure of a sentence. In contrast, a
global learning strategy trains the whole system as one. That is, all the pre-
dictors of the system are trained in one go, dependently, taking into account
that a local prediction is not final, but depends on an inference process that
trades off local predictions to produce an optimal global outcome. To make
it clear, a direct consequence of this difference is found at the granularity of
the training examples. In the global approach, the training collection consists
of sentences, each accompanied with its correct structure, and the goal of the
learner is to obtain an accurate hypothesis mapping sentences to structures,
under some learning criteria and a global loss function. On the other hand,
the local approach breaks each example into many lower-level examples. For
example, a sentence/tagging pair is broken into many word/tag pairs, and the
learner attempts to learn a function mapping words to tags, under some local
loss function. Obviously, the global loss function is usually in more direct re-
lation to the error function of the problem than the local loss function. In the
context of sequential learning, Lafferty et al. [2001] identify a potential problem
for locally learned discriminative models based on state-transition automata,
that they call label bias problem. They claim that transitions leaving a state
compete only against each other, rather than against all other transitions. This
implies that inference cannot effectively trade off decisions at different posi-
tions, and may produce severe consequences for sparsely connected automata.
To overcome the problem, they propose Conditional Random Fields (CRFs), a

38 A Review of Supervised Natural Language Learning

global conditional model that estimates the probability of an entire sequence of
labels given the input sequence. That is, CRFs do not decompose the global
conditional probability distribution into several local, per-state distributions
trained independently. In a different line, Collins [2002] proposes a Perceptron
algorithm to train a global discriminative model. This technique is central to
this thesis, since it is the selected learning algorithm for our systems and ex-
periments. Next section discusses margin-based algorithms, to which Collins’
Perceptron belongs.

2.2 Learning Linear Separators: A Margin Based
Approach

This section reviews the family of machine learning algorithms used in the sys-
tems of this thesis, known as large margin methods. First we introduce the
main concepts that motivate and justify the algorithms. Then, we discuss par-
ticular large margin learning algorithms for classification and structured-output
problems.

2.2.1 Theoretical Aspects of Distribution Free Learning

In this section we overview some concepts and results of Computational Learning
Theory (COLT), the research area devoted to analyze theoretically learning
paradigms and methods. The paradigm we are interested on is PAC learning
[Valiant, 1984; Kearns and Vazirani, 1994], that studies under which conditions
it is possible to learn accurately a given concept. Under this paradigm, we
focus on Statistical Learning methods, defined by Roth [1998] as those that
make inductive generalizations from observed data, and then use them to make
inferences with respect to previously unseen data.3 In particular, we describe the
main concepts of the Structural Risk Minimization principle of Vapnik [1998],
which provides theoretical grounds for margin-based algorithms such as Support
Vector Machines. The ideas and concepts of this section are described with
more detail in the book of Cristianini and Shawe-Taylor [2000], in the tutorial
by Burges [1998], or in the overview of Statistical Learning Theory by Vapnik
[1999].

In PAC learning, the only key assumption is that there exists some unknown
probability distribution D over X × Y. This distribution is used to generate a
training set of m examples of the form {(xi, yi)}

m
i=1, which are independently

drawn according to D and identically distributed. This setting includes the
particular case where it is assumed the existence of a target function f that
associates a fixed y for every x, that is, y = f(x). Since, in general, the only
assumption is the existence of the unknown distribution, methods derived under
this paradigm are known as distribution-free methods. In this situation, the only
data available to the learner is the training set.

3As Roth [1998] points out, this family of methods includes both probabilistic, symbolic
and sub-symbolic methods, as they all make use of statistics of the training data to learn.

2.2 Learning Linear Separators: A Margin Based Approach 39

The learning algorithm can choose among a set of possible functions H, called
hypothesis space. It is common to define H as a class of functions parametrized
by a set of adjustable parameters α, so that a particular choice of α determines
a particular function hα ∈ H. From this point of view, learning consists of
finding a hypothesis hα by giving value to the parameters α. In our case, H
will be the space of hyperplanes or linear separators, with α being the normal
vector uniquely identifying a hyperplane.

In order to evaluate the quality of a learned function, a loss function, denoted
L(y, ŷ), measures the error or cost of proposing the output ŷ when the correct
output is y. For instance, in classification problems it is common to consider
the 0-1 loss that, for a given example (x, y) and hypothesis h, assigns a penalty
of 1 when y 6= h(x) and 0 otherwise. The expectation of the error of a learned
hypothesis h from X to Y, called the expected loss or generalization error, is
defined as the mean of losses over the X × Y space as follows

Er(h) =

∫

L(y, h(x)) dD(x, y)

Note that, for 0-1 loss, the above expression corresponds to the probability of
classification error. The goal of a learning algorithm is to choose the hypothesis
that minimizes the expected loss, in the situation where D is unknown and the
only available data is the training set. The empirical loss, or training error, is
defined to be the mean of losses on the training set, and is computed as:

Eremp(h) =
1

m

m∑

i=1

L(yi, h(xi))

This quantity establishes an inductive principle for a learning algorithm,
called Empirical Risk Minimization (ERM), consisting of choosing the hypoth-
esis which minimizes the training error on the given training set.

The question which arises is whether low training error implies low general-
ization error. Thus, a fundamental problem in learning is that of generalization,
or ability of a hypothesis to correctly classify data not in the training set. Com-
putational Learning Theory aims to answer this question by giving upper bounds
on the generalization error. Broadly, these bounds relate the deviation between
the training error and the generalization error. For instance, it is possible to give
conditions which ensure that by increasing the size of the training set the train-
ing error will asymptotically converge toward the generalization error. However,
in practice training sets are fixed, and for realistic sizes large deviations between
empirical and true error are possible. Alternatively, generalization properties
can be studied through a notion of complexity of the functions in the hypoth-
esis space, so that the generalization error is upper bounded by the training
error, the size of the training set and some quantities related to the space of
hypotheses. A complementary question of the theory is that of convergence,
or how quickly a learning method minimizing the training error achieves low
generalization error. The results of this theory provide a principled method for

40 A Review of Supervised Natural Language Learning

designing learning algorithms: methods are designed to optimize the quantities
that have influence on the generalization and convergence rates.

An important issue, therefore, is the characterization of hypothesis spaces.
Generally, hypotheses that become too complex to achieve no error on the train-
ing set are likely to overfit the data, and may not have good generalization prop-
erties. When dealing with a finite hypothesis class, its complexity depends on its
size. For an infinite hypothesis space –which is the case of linear separators– a
measure called VC-dimension accounts for the complexity of the space. Roughly
speaking, this measure refers to the capacity of a hypothesis space to produce
a hypothesis with zero empirical error for any training set. With this notion of
complexity, the Structural Risk Minimization (SRM) inductive principle of Vap-
nik [1998] states that the best generalization for a learning task, given training
data, is achieved by assessing the right balance between good accuracy on the
training data, in terms of empirical error, and low complexity of the selected
hypothesis, in terms of VC-dimension. The underlying generalization bound of
a hypothesis h ∈ H is, with probability 1 − η,

Er(h) ≤ Eremp(h) +

√
(

d(log(2m/d) + 1) − log(η/4)

m

)

where m is the size of the training sample and d is the VC-dimension of H. Note
that both low VC-dimension and big training samples have a positive influence
on achieving low generalization error.

Linear Separators and Margin

We focus now on the case that the hypothesis space is the set of n-dimensional
linear separators, in the setting of binary classification. That is, input instances
are vectors x in IRn, and Y = {+1,−1}. The space of (normalized) hyperplanes
is:

H = { hw,b | w ∈ IRn, b ∈ IR, ‖w‖ = 1 }

A hyperplane in hw,b ∈ H induces the following classification rule:

hw,b(x) = sign(〈w,x〉 + b) =

{
+1 if 〈w,x〉 + b > 0
−1 otherwise

Note that, geometrically, a hyperplane hw,b is formed by the set of points
z in the Euclidean space IRn that satisfy 〈w, z〉 = 0. Thus, hw,b divides the
IRn space into two regions or half-spaces: the +1 region, for points falling on
the positive side of the hyperplane; and the -1 region, for points falling on the
negative side. A hyperplane is defined to be a γ-margin separating hyperplane
if it classifies instances as follows:

hw,b,γ(x) =

{
+1 if 〈w,x〉 + b ≥ γ
−1 if 〈w,x〉 + b ≤ −γ

2.2 Learning Linear Separators: A Margin Based Approach 41

That is, a classification is only produced when the distance from the hyperplane
to x is greater than γ, and for points falling into the margin region (−γ, γ) the
classifications are undefined.

Now, it can be proved that the VC-dimension d of the set of γ-margin sepa-
rating hyperplanes is bounded by the following inequality (see [Vapnik, 1999]):

d ≤ min

(
R2

γ2
, n

)

+ 1

where R is the radius of a sphere containing vectors x. That is, in general the
VC-dimension of a hyperplane is n+1, where n is the dimensionality of the input
space. However, for hyperplanes separating the input space with large margin
γ the VC-dimension can be less than n + 1. This observation is crucial for
the family of methods explicitly looking for large-margin hyperplanes, such as
Support Vector Machines, since it connects the learning strategy of the methods
with the theoretical grounds of the SRM principle.

2.2.2 Learning Algorithms: From Classification to Dis-
crimination of Structures

In the 90s, the theoretical results of Statistical Learning Theory of Vapnik [1998],
over-viewed in the previous section, translated into novel learning algorithms
looking for separating hyperplanes with large margin, with Support Vector Ma-
chines (SVMs) as the most prominent method in the family. In this section, we
describe some of these algorithms in the context of function approximation by in-
creasing complexity of the output space: from binary classification, to multiclass
classification, to discrimination of structures belonging to an exponential-sized
space.

Binary Classification

Cortes and Vapnik [1995] proposed soft-margin SVMs for binary classification,
the first practical learning algorithm motivated by the SRM inductive principle.
Following Vapnik’s theory, this algorithm looks for the optimal hyperplane, de-
fined as the linear separator with maximal margin between the training points
of the two classes. One of the key observations is that such optimal hyperplane
can be expressed as a linear combination of a small amount of training points,
the so called support vectors, with two main results. The first is that the sup-
port vectors determine the margin of the hyperplane, which has direct influence
on the confidence term of generalization bounds. Importantly, the quantities
bounding the error are independent of the dimensionality of the input space,
which makes the method attractive for dealing with high-dimensional spaces
—which is the case of natural language learning problems. The second result is
that the operations for constructing and testing the optimal hyperplane admit a
non-linear mapping of the input instances into a high-dimensional feature space.
In such space, the learning algorithm makes use only of inner products between

42 A Review of Supervised Natural Language Learning

an instance and the support vectors, all of them transformed. The function im-
plicitly computing the inner product in the transformed space, chosen a priori,
is known as the kernel function. Thus, through a kernel function, the support
vector method is able to construct rich classes of decision surfaces.

The soft-margin SVM [Cortes and Vapnik, 1995] formulates this method for
the general case of training data that may not be separable. In the formulation,
the problem of finding the optimal hyperplane results in a constrained quadratic
optimization program, in which there is one constraint for each training point
that controls the prediction on that point. In this setting, the objective of
the program is to maximize the margin of the hyperplane, paying a penalty
for those training points which are misclassified. Thus, the soft-margin SVM
follows the SRM principle since it allows to trade off the empirical error and the
capacity of the classifier. In particular, by allowing misclassified training points
the margin of the separating hyperplane increases. Moreover, the capacity can
be varied by changing the kernel function which induces the feature space where
the hyperplane is learned. Roughly speaking, more complex kernels yield better
separation, and, thus, more margin and less training error. However, increasing
the dimensionality of the feature space also makes the radius of the sphere
containing instances larger, which has a negative influence on the confidence of
the learned classifier.

In their paper, Cortes and Vapnik [1995] considered the SVM method, named
there support vector networks, “as powerful and universal as neural networks”.
In fact, from the first works in the early 90s, the research related to SVMs
has witnessed a tremendous impact on the machine learning community, which
has populated, on the one hand, the study of large margin methods [Smola
et al., 2000] and, on the other hand, the research related to kernel methods and
functions [Schölkopf and Smola, 2002].

Concerning the first direction, number of algorithms have been analyzed in
terms of their ability to produce large margin predictions on the training sam-
ple. For instance, Schapire et al. [1998] showed that the AdaBoost algorithm,
initially designed as a voting method to “boost” the performance of weak clas-
sifiers, was particularly aggressive at inducing large margins. This explained
the ability of AdaBoost to improve the test error as more base classifiers were
added to the ensemble, after the training sample was perfectly learned. Also, the
traditional Perceptron algorithm of Rosenblatt [1958] has been redefined as a
large-margin method [Freund and Schapire, 1999; Cristianini and Shawe-Taylor,
2000]. Freund and Schapire [1999] proposed the Voted Perceptron algorithm,
a modification of the original Perceptron that includes voting in the predic-
tion, admits kernels, and has theoretical guarantees similar to those of the SVM
method, while it is much easier and simpler. Due to its simplicity and good
properties, the Voted Perceptron algorithm is used in the systems proposed in
this thesis.

2.2 Learning Linear Separators: A Margin Based Approach 43

Multiclass Classification

While SVMs were originally designed for binary classification, there have been a
number of works extending the maximum-margin strategy to classification into
a fixed number of labels (e.g., Weston and Watkins [1999], Crammer and Singer
[2001]).

The traditional approach for solving multiclass problems relies on the one-
versus-all assumption, which reduces the multiclass problem to many binary
classification problems. Here, a set of binary classifiers is built, each discrim-
inating between one of the labels and the rest. Such classifiers are trained
independently with a binary classification algorithm. In doing so, it is assumed
that each class can be separated from the rest. To classify a given instance, a
winner-take-all scheme is followed: the class associated to the binary classifier
with highest prediction is selected.

In multiclass margin-based learning, the approach is more direct. As in the
traditional approach, there is a hyperplane for each class, that given an instance
predicts a confidence score for the instance belonging to the associated class,
and the multiclass classification is produced under winner-take-all. The key
point of the approach consists of a generalized definition of the margin for mul-
ticlass problems. In particular, the margin is defined as the difference between
the confidence score of the correct class and the highest score of the competing
incorrect classes. Note that, as in binary classification, a positive margin im-
plies correct classification, and that the larger the margin, the more confident a
classification is. On this definition of margin, Crammer and Singer [2001] for-
mulate the problem of finding the maximal margin multiclass hypothesis. The
resulting problem is a single constrained optimization problem, where for each
example and class there is a constraint controlling the associated confidence
value predicted by the hypothesis. The idea of approaching multiclass learning
directly as a single constrained problem is not exclusive of SVMs. Har-Peled
et al. [2002] describe a general framework for formulating constrained learning
problems concerning a fixed number of classes, which include binary, multiclass
and multilabel classification, and label-ranking problems. Extensions for these
problems have been proposed for margin based algorithms such as AdaBoost
[Schapire and Singer, 1999] or Perceptron [Crammer and Singer, 2003b,a].

Discrimination of Structures

Learning problems in which the input and output space are structured intro-
duce a major challenge: the number of possible structures for an instance is of
exponential cardinality with respect to the size of the instance. Throughout this
chapter we have reviewed techniques to deal with these problems. The underly-
ing models compactly represent decomposed solutions, and the whole approach
relies on learning and inference processes that decide efficiently for the optimal
structure of an instance, given a trained model. In this section, we comment on
large margin learning approaches for such problems.

To our knowledge, Collins [2000] was the first to look at the margin of pre-

44 A Review of Supervised Natural Language Learning

dictions for structured problems, in the context of syntactic parsing. There, the
model is a ranking function that predicts a confidence score for an instance-
structure pair. Then, discriminating the structure of a given instance corre-
sponds to select the top-ranked structure, that is, the one with highest confi-
dence score. Hence, as in the multiclass setting, the margin of an instance is
the difference between the score of the correct structure and the highest score
of the incorrect structures. However, the approach in that work does not deal
with the exponentiality of the output space, since the motivation was to take
advantage of the globality of solutions. Instead, a baseline parser was used to
select a tractable set of candidate solutions that presumably contained the cor-
rect solution. Since the baseline parser already ranks the possible candidates,
the overall two-stage approach is known as re-ranking. Collins [2000] proposed
a boosting algorithm to solve the re-ranking learning problem, using his proba-
bilistic state-of-the-art parser for proposing candidates.

Later, Collins [2002, 2004] showed that learning directly a full ranker looking
at margins is possible. The algorithm he proposed is a generalization of Per-
ceptron, and relies on properties of the ranking model. In particular, learning
is possible if there exists an inference algorithm that efficiently retrieves the
top-ranked structure for an instance (e.g., dynamic programming algorithms).
Then, when visiting an example the Perceptron algorithm uses the inference al-
gorithm to predict the top-ranked structure of the example. If it is correct, the
ranking function is left unchanged. If it is incorrect, the appropriate parameters
of the function are updated to overcome the error. In other words, Perceptron
looks for a hyperplane that achieves positive margins on the training sample.
Moreover, it allows to use kernels and voting schemes that help achieving large
margins. The representation of solutions and the type of ranking model are
crucial in this approach because they determine the existence of efficient infer-
ence algorithms, which is the key point for dealing with the exponentiality of
solutions. With appropriate ones, the strategy that Perceptron follows to learn
a binary classifier is also valid for discriminating structures. This algorithm has
been used in the context of part-of-speech tagging and noun phrase chunking
[Collins, 2002], and full parsing [Collins and Roark, 2004], in all cases yielding
results comparable to the best systems of the state-of-the-art. In the following
chapter, Section 3.4.2 discusses the algorithm in detail, since it is used in the
systems proposed in this thesis.

Recently, a formulation for the maximal margin separating hyperplane in
structured domains has been proposed [Taskar et al., 2003; Tsochantaridis et al.,
2004]. Again, the resulting problem is a constrained quadratic program. Here
the constraints control the loss suffered for each training instance and possible
output structure. Unlike the classification formulation, which is tailored to the
standard 0-1 loss, the optimization program in this setting admits general loss
functions that contemplate the degree of correctness of a solution. However,
the main challenge in this setting is that there is an exponential number of
constraints in the program, which makes it intractable in general. To overcome
this problem, Taskar et al. [2003] restrict to Markov-based hyperplanes that
represent compactly the necessary parameters to discriminate the structured

2.3 Learning Systems in Partial Parsing 45

space. They show that with these representations the optimization program
can be expressed with a polynomial number of constraints, which makes learn-
ing possible. In the same direction, Taskar et al. [2004] extend the maximal
margin formulation for PCFG models. In a different line, Tsochantaridis et al.
[2004] propose a method for identifying a polynomially-sized subset of active
constraints. The optimal hyperplane considering only the active constraints is
guaranteed to be a close approximation of the hyperplane optimizing the pro-
gram with the full set of constraints. This formulation allows arbitrary models
and loss functions, as long as it is provided an efficient inference procedure for
retrieving the structure with maximum loss for a given instance. The method
builds on previous works on discriminative learning for sequence labeling [Altun
et al., 2002, 2003].

2.3 Learning Systems in Partial Parsing

Abney [1996b] defines Partial Parsing as the range of different techniques for
recovering some but not all the information contained in a traditional syntac-
tic analysis. Partial parsing techniques were motivated in the late 80s by the
success of part-of-speech tagging systems on unrestricted text, e.g. [Church,
1988]. Although, linguistically, it is well-known that part-of-speech disambigua-
tion cannot be solved without solving the rest of the natural language disam-
biguation problem, reasonable accuracies where achieved by those systems with
fairly simple statistical techniques. Therefore, the question was whether, by
extending such techniques, more layers of partial analysis could be efficiently
solved with reasonable accuracy and robustness. Initial partial parsing systems
concentrated at recovering just the structure that can be reliably recovered with
a minimal set of manually given rules and regular expressions. The underlying
techniques were mainly based on finite-state automata or simple grammar for-
malisms, and probabilistic versions of them, and resulted in very fast and quite
reliable recognizers of the basic, non-recursive chunks of a sentence [Church,
1988; Ejerhed, 1988; Abney, 1990, 1991, 1996a; Grefenstette, 1996].

During the 90s, the impact of statistical and machine learning methods on
natural language processing gave new challenges and directions in partial pars-
ing [Hammerton et al., 2002]. The general approach, pioneered by Ramshaw
and Marcus [1995], consists of formulating a partial parsing task as a general
classification problem, such a sequential tagging task. Then, a broad range of
machine learning algorithms can be used to automatically learn the classifiers
involved in the partial parsing task. The machine learning approach is superior
to initial partial parsers in two aspects: first, there is no need to hand-craft the
rules of the parser; second, the accuracy of the learned parsers is generally much
better. These results permit scaling up partial parsing techniques, from the ini-
tial goal of recognizing simple chunks of some specific types, to considering the
whole range of syntactic categories, or phrases that admit some recursivity.

In general, partial parsing tasks and techniques lie between part-of-speech
tagging and full parsing. In what follows, we first describe typical learning

46 A Review of Supervised Natural Language Learning

architectures of partial parsing systems found in the literature. Due to the
structured nature of phrases, all of them combine learning and inference pro-
cesses, mostly sequential. Then we review particular systems of the literature
that have influenced this thesis.

2.3.1 Typical Architectures

In the literature, we find different general architectures for partial parsing.
Broadly, there are two related main difficulties in a partial parsing task, or,
more generally, a phrase recognition task. The first concerns the structural
nature of the phrases in a sentence, with implications on the complexity of al-
gorithms. Relative to the length of a sentence, there is a quadratic number of
possible phrases, and an exponential number of structures made with phrases.
Partial parsing tasks, by definition, are tasks in which the structures are not
too complex. Thus, a common approach in partial parsing is based on models
at word level, that is, models that associate parameters to features of a word
and its local context. These family of models is known as taggers. Beyond
taggers, other models operate at phrase and sentence level, with the advantage
of exploiting richer patterns and constraints in the representation.

The second difficulty concerns the linguistic scheme with which we are willing
to annotate the structures. In other words, what are the labels of the phrases
appearing in a sentence and their relationships. In Natural Language tasks, label
sets go from syntactic categories to semantic meanings (named entity categories,
roles in a predicate of syntactic arguments), and can be defined at different
granularity levels. While current systems dealing with syntax achieve reasonable
accuracies, semantic disambiguation still constitutes a major challenge, with
accuracies that are far from acceptable.

Accordingly, in a solution we distinguish between the bracketing, as the
unlabeled structure that segments a sentence into phrases, and the labeling, as
the assignment of linguistic labels to the phrases and relations of the bracketing.

In what follows, we review four main approaches to determine a labeled
bracketing of phrases in a sentence.

Taggers

A common approach for recognizing phrases in a sentence consists of performing
a tagging along the tokens of the sentence. The underlying idea is to represent
phrase structures with a limited set of tags, and use essentially the same ma-
chinery developed for lower-level problems such as part-of-speech tagging. A
tag is assigned to each token or word, or in between of each contiguous pair of
tokens. The tags assigned to a sentence encode both the phrasal bracketing and
the labels of the phrases and their relationships. The phrase structures must be
relatively simple, otherwise the tag scheme becomes too complex. Because of
this, under this approach only shallow or limited-depth phrases are considered.

To recognize structure, a learning model is trained to predict the correct tag
for each word. The type of learning found in the literature goes from probabilis-

2.3 Learning Systems in Partial Parsing 47

tic methods [Church, 1988; Skut and Brants, 1998] to classification and other
distribution-free learners [Ramshaw and Marcus, 1995; Kudo and Matsumoto,
2000; Tjong Kim Sang, 2002b; Collins, 2002]. In all cases, the parameters of
the learning model are associated to local patterns of the target word and its
neighboring words and tags. Thus, learning components operate at word level.
We comment on the two most common tagging strategies:

Open-Close tagging. Church [1988] introduced the idea of parsing simple
Noun Phrases by means of performing a tagging along tokens. The approach is
to capture statistics for assigning an open or close bracket between two adjacent
words, assumed to be PoS-tagged. Then, recognizing NPs in a PoS-tagged
sentence consists of computing the most probable bracketing, checking that open
and close tags of a bracketing are balanced. Skut and Brants [1998] augmented
the tags for recognizing labeled phrases organized in structures of limited depth,
set to 3.

BIO tagging. Ramshaw and Marcus [1995] proposed the IOB tagging scheme
to represent shallow phrases, alternative to Church’s open-close brackets. Tags
are assigned to words, rather than positions in between, and encode that a word
is Inside or Outside a phrase. A third tag, Begin, is used to encode words which
begin a noun phrase immediately after another noun phrase. Unlike open-close
representations, this tagging scheme is very simple at checking that a certain
tagging represents a well-formed phrase structure. Phrase labels can be encoded
by augmenting the begin-inside tags with corresponding labels. Tjong Kim Sang
and Veenstra [1999] proposed variations of begin-inside-end-outside tags (see
also [Tjong Kim Sang, 2002b]). They exploited the difference in expressivity
of different tagging schemes. For each one, they learned a set of classifiers,
which were then used in combination to improve predictions. In the literature,
a standard setting is to use the Begin tag for all words that begin a phrase,
together with inside and outside tags. We refer to this representation as BIO
tagging.4

Recognition + Labeling

In this approach, the phrase recognition task is decoupled into two cascaded
subtasks. The first subtask decides for the best well-formed bracketing of the
sentence. Then, the second stage decides the appropriate labels for the phrases
in the bracketing and their relationships.

Deciding for the best bracketing can be done by tagging the tokens of the
sentence with structural tags, which encode brackets of the phrase structure.
This tagging is relatively simple, since tags do not encode the labels of linguistic
elements.

4Tjong Kim Sang refers to this tagging as IOB2; we prefer BIO, since we think it is more
intuitive.

48 A Review of Supervised Natural Language Learning

After the first stage, the brackets segment the sentence into a number of
phrases without labels. In the most simpler version, assigning labels to such
phrases corresponds to a multiclass classification problem: for each phrase, a
classifier decides for the best label among all possible labels considered in the
task. Alternatively, the assignment of labels to phrases can be done dependently.
An advantage of this approach is that a phrase is already constructed when
selecting the best label for it, and information about the complete phrase can
be extracted to support the classification. Thus, in the second stage learning
operates at phrase level.

A disadvantage is that the bracketing predicted in the first stage is final,
and it has been recognized without considering the labels of the elements in the
structure. In some complex domains, it might be argued that this assumption is
quite strong, and that it would be better to predict the bracketing dependently
of the phrase types.

This two-stage approach is commonly used in problems such as Named En-
tity Extraction or Semantic Role Labeling. In these tasks, phrases –named enti-
ties or propositional arguments, respectively– have a syntactic structure, while
their labels denote the meaning of them, according to some predefined semantic
scheme. To some extent, it is assumed that phrase boundaries are independent
of the semantics of phrases, thus permitting the two-stage approach.

Filtering + Ranking

This approach aims to combine the advantages of the two previous approaches.
It is organized in two stages. The first stage, which we refer to as filtering,
identifies a set of candidate phrases for the sentence, either labeled or not, which
do not necessarily constitute a well-formed solution (e.g., two candidate phrases
may overlap, which is never permitted in a phrase structure). The second stage
considers well-formed solutions made of candidate phrases and, under a criterion
for ranking solutions, selects the top-ranked one.

Filtering is intended to filter out implausible phrases, which constitute most
of the possible phrases. It is usually approached as a tagging along the words of
the sentence, with learners operating at word level. However, here the tags of
the sentence do not represent a well-formed solution, but only a set of possible
phrases for the sentence. The goal of this stage is to substantially reduce the
output space of the task efficiently (i.e., linearly on the number of words), leaving
complex ambiguities for the second stage.

In the second stage, the goal is to predict the best well-formed structure
for the sentence, selecting the best candidate phrases to build it. Because of
the filtering stage, it can be assumed that the number of candidate phrases is
not very high. Then, higher-order processing techniques can be used. In this
stage, the candidate phrases are scored by some learning functions. Learners
operate at phrase level and, to support the scoring process, information about
complete phrases can be extracted. Then, deciding for the best structure is
done by selecting the structure made of the best scored phrases. In doing so, it
must be taken into account some constraints dictating whether a certain phrase

2.3 Learning Systems in Partial Parsing 49

is compatible with some other phrases to form a valid structure.

This approach is central to this thesis, since Chapter 4 proposes a particular
learning architecture based on filters and rankers [Carreras et al., 2005, 2004].

Punyakanok and Roth [2001, 2004] applied this approach to the problem of
shallow syntactic parsing, making use of SNoW learners. The phrase structures
made of candidate phrases were compactly represented in a directed graph, in
which paths connecting two special start and end nodes represent well-formed
structures for the sentence. Edges in the graph were weighted according to the
classifiers’ predictions, and the shortest-path algorithm was used to infer the
best structure.

Re-Ranking

Re-ranking methods rely on a baseline system which generates a list of candidate
solutions for the problem. Then, the re-ranker system selects the best solution
from the list of candidate solutions. Typically, baseline systems are probabilistic
systems that select the N most probable solutions for a sentence, where N is a
constant of the architecture. Then, the list of candidate solutions is re-ranked
so that the correct one is at the top of the list.

The aim of this approach is to improve the accuracy of existing probabilistic
systems, motivated by the limitation of probabilistic models to include arbitrary
features. On the one hand, the baseline system discards most of the possible
structures. In particular, it simplifies the problem from having an exponential
number of solutions to just N possible solutions. On the other hand, the re-
ranker deals with global solutions, and has to discriminate the correct solution
from the list of candidates. To do so, it can incorporate an arbitrary number
of features, each encoding information possibly related to an entire solution.
Thus, the expressivity of the re-ranker is potentially very rich, compared to
the representations adopted in probabilistic models, where only features related
to the derivation of a solution are possible. Clearly, to achieve success, the
probabilistic model has to be accurate enough to place the correct solution
among the list of N candidates. Yet, N cannot be very large, since the re-
ranker will exhaustively visit each candidate to score it.

Collins [2000] experimented with a re-ranking model for full-parsing (see
also the excellent extended version in [Collins and Koo, 2005]). In that system,
the baseline model consists of his head-driven statistical parser [Collins, 1999],
while the re-ranker is a boosting learning algorithm, working with hundreds
of thousands of global features. Experimentally, the re-ranker achieved a 13%
error reduction relative to the accuracy of the baseline parser. Later, Collins
and Duffy [2002] experimented with a re-ranker based on the Voted Perceptron
with kernels for sequences and trees, in the context of full parsing and named
entity recognition.

50 A Review of Supervised Natural Language Learning

2.3.2 A Review of Partial Parsing Systems

In this section we briefly review some systems in the literature that deserve
special mention. We list them chronologically:

[Church, 1988] Develops a Noun Phrase recognizer that runs after a Part-
of-Speech tagger, proposed in the same paper. It performs stochastic Open-
Close tagging, with probabilities over open-close brackets between every pair
of adjacent PoS tags. The probabilities are estimated as in the PoS tagger, by
Maximum Likelihood.

[Abney, 1991] Studies linguistic phenomena related to partial parsing tasks.
He provides psycholinguistic evidence in favor of partial analysis, and defines a
practical decomposition of a global analysis into partial tasks designed to avoid
attachment ambiguities. The architecture is formed of chunkers, that segment
the sentence into basic linguistic elements (i.e., chunks), and attachers, that form
higher level constituents and detect relations among them. The disambiguation
approach is knowledge-based, although the type of tasks and decisions that are
considered constitute a source of inspiration for learning-based systems.

[Ramshaw and Marcus, 1995] Introduce the IOB representation for Noun
Phrase recognition and a more general shallow parsing task. With IOB rep-
resentation, the task is formulated as a tagging task involving inside, outside
and begin tags. They use Transformation-based learning as a general machine
learning algorithm to obtain a classifier for each tag. The concrete definition of
Noun Phrase task and the experimental datasets has become a benchmark for
evaluating other systems developed later.

[Skut and Brants, 1998] Augment Church’s open-close brackets with in-
formation on phrase labels and fixed-depth recursions in the phrase structure.
They use probabilistic Markov modeling to obtain sequence taggers.

[Tjong Kim Sang and Veenstra, 1999] Explore several representations of
a chunk into tags. In particular, making use of chunk begin-inside-end-outside
tags, they define several tagging schemes, each capturing different particularities
of the words that form phrases. They use Memory-based learning to obtain a
classifier for each tag. Tjong Kim Sang [2000] applied system combination of
different redundant tagging schemes, improving the performance in the context
of syntactic chunking. Later, Tjong Kim Sang [2002b] applied similar learning
techniques to Clause Identification and other partial parsing tasks, which are
cascaded to build a complex output structure.

[Argamon, Dagan, and Krymolowski, 1999] Propose a memory-based
sequential learning algorithm to predict labeled bracketings. The training phrase
structures are represented as sequences of PoS tags (the input) and phrase

2.3 Learning Systems in Partial Parsing 51

brackets (the output). The memory stores all subsequences of input-output tags
found in training, called tiles. Then, to recognize a bracketing for a sentence,
the training tiles are combined to form coherent bracketings that match the PoS
tags of the input sentence. The scoring function of a solution takes into account
tile frequencies obtained from training data, and other features regarding the
tags in the tiles that form a solution. Greedy inference is performed to find the
best solution. The method was first proposed for shallow phrase patterns, and
extended later in [Dagan and Krymolowski, 2001] to deal with recursivity.

[Kudo and Matsumoto, 2001] Apply Support Vector Machines (SVM) to
syntactic chunking, in the context of the CoNLL-2000 Shared Task. The chunk-
ing problem is approached as a sequential tagging, and reduced to multiclass
learning. That is, a multiclass classifier decides the appropriate tag for each
word of the sentence. The multiclass classifier is implemented via pairwise
binary classifiers, each learned independently as a SVM. Classifiers take into
account the predictions of neighboring words, and sequential inference is per-
formed using beam search. They experiment with many different tag schemes,
and apply system combination to improve the performance. This approach leads
the best results on the CoNLL-2000 data set.

[Punyakanok and Roth, 2001] Present two families of sequential infer-
ence strategies to perform phrase recognition with word-based classifiers. The
first approach is based on probabilistic inference under Markov assumptions.
They adapt joint and conditional probabilistic sequential models to work with
classifiers. The second scheme for sequential inference is based on constraint
satisfaction. Constraints reflect which classifications on different words yield
to incoherent phrase structures. The inference algorithm, tailored for shallow
phrase structures, selects the optimal global assignment that satisfies the con-
straints. See [Punyakanok and Roth, 2004] for an extended version.

[Zhang, Damereau, and Johnson, 2002] Use a large-margin version of
Winnow to learn word-based classifiers, that are plugged into a Markov condi-
tional model that recognizes shallow phrase structures by tagging words. In syn-
tactic chunking, they obtain state-of-the-art results on the CoNLL-2000 dataset,
very close to the leading result. Moreover, by using grammatical information
obtained from a resource, they substantially improve the results on that dataset
(yielding the best result, although this one is not comparable to others because
it uses external information).

[Collins, 2002] Presents a global Perceptron algorithm to train a conditional
Markov model for sequential tagging. He experiments with two problems, part-
of-speech tagging and Noun Phrase chunking. In both cases, the obtained results
are comparable to the top-performing methods in the literature. This global
Perceptron algorithm is central for our work, since we propose an extension of

52 A Review of Supervised Natural Language Learning

it for more general phrase recognition problems. See also the application of the
global algorithm to full parsing in [Collins and Roark, 2004].

[Sha and Pereira, 2003] Apply Conditional Random Fields [Lafferty et al.,
2001] to Noun Phrase chunking, performed as sequential tagging. They obtain
one of the top-performing results for the specific chunk, in the context of the
CoNLL-2000 data.

[Sutton, Rohanimanesh, and McCallum, 2004] Propose dynamic Con-
ditional Random Fields, a global conditional model for recognizing several layers
of dependent output labeled sequences. They experiment with the task of jointly
predicting part-of-speech tags and noun phrases, showing that the joint model
performs better than two separate models applied in cascade.

Chapter 3

A Framework for Phrase
Recognition

This chapter discusses a particular framework, and a variety of techniques within
it, to recognize a set of phrases in a sentence. The following chapters present
particular phrase recognition architectures that make use of the concepts and
techniques explained here. Many of the concepts and formalizations in this
chapter are based on statistical approaches to tagging and parsing of language
[Charniak, 1993] and margin-based learning algorithms [Cristianini and Shawe-
Taylor, 2000; Crammer and Singer, 2003b], as well as recent material on parsing
with margin-based algorithms [Collins, 2004].

The general scheme consists of a divide-and-conquer strategy. The prob-
lem of recognizing phrase structures in a sentence is decomposed into smaller
subproblems. This decomposition involves issues concerning the representation
of phrase structures in a sentence, the granularity at which the learning func-
tions –as basic recognition functions– are devised and its learnability, and the
exploration of the solution space.

The components of a phrase recognition architecture are :

• The model, which defines the representation of a solution and the com-
ponents of the recognition (i.e., the learning functions).

• The inference algorithm (a.k.a. tagger, parser, decoding algorithm),
which defines the strategy to efficiently search for the best solution.

• The learning strategy, for training the learning components of the ar-
chitecture from data.

The rest of the chapter is organized as follows. The next section gives a
formal definition of the phrase structures and the problem of recognizing them
in a sentence. Then, the following sections discuss the design of the three
main components of a phrase recognition architecture; namely models, inference
algorithms, and discriminative learning strategies.

54 A Framework for Phrase Recognition

3.1 A Formal Definition of Phrase Structures

Let x be a sentence consisting of a sequence of n words [x1, x2, . . . , xn], belonging
to the sentence space X . Let K be a predefined set of phrase categories. For
example, in the syntactic parsing task K may include, among others, noun
phrases, verb phrases, prepositional phrases, and clauses. A phrase, denoted as
(s, e)k, is the sequence of consecutive words spanning from word xs to word xe,
having s ≤ e, with category k ∈ K.

Let p1 = (s1, e1)k1
and p2 = (s2, e2)k2

be two different phrases. We define
that p1 and p2 overlap iff s1 <s2≤e1 <e2 or s2 <s1≤e2 <e1, and we note it as
p1∼p2. Also, we define that p1 is embedded in p2 iff s2≤s1≤e1≤ e2, and we
note it as p1≺p2.

Let P be the set of all possible phrases, expressed as:

P = {(s, e)k | 1≤s≤e, k∈K}

In a phrase recognition problem, a solution for an input sentence x is a finite
set y of phrases which is coherent with respect to some constraints. One of the
constraints is that phrases of a solution are not allowed to overlap. Then, we
differentiate two types of problems depending on the embedding constraint.

In a sequential phrase recognition problem, often referred to as chunk-
ing, phrases of a sentence are not allowed to embed. Thus, the solution space
can be formally expressed as:

Y = {y⊆P | ∀ p1, p2∈y p16∼p2 ∧ p16≺p2}

In the literature, it is common to refer to a phrase that does not accept embedded
phrases as a chunk or base phrase.

In a hierarchical phrase recognition problem, a solution is a set of
phrases which may be embedded. Formally, the solution space is:

Y = {y ⊆ P | ∀ p1, p2∈y p16∼p2}

Note that the embedding of phrases is not a requirement. Either a set of chunks,
a tree of phrases, or a forest of phrases are valid phrase structures for a sentence.
Thus, the output space here is general but also complex. It is common to refer
as recursive phrase to a phrase that contains embedded phrases, these being
either recursive or base phrases.

Note that, for simplicity and readability, we have defined the P and Y sets
independently from concrete word sequences. However, whenever we are refer-
ring to the P and Y sets in the context of a concrete input sequence [xi]

n
i=1 we

implicitly restrict to phrases (s, e)k which span actual word sequences in x (i.e.,
1 ≤ s ≤ e ≤ n), and to solutions formed with these phrases.

3.2 Models 55

3.2 Models

The models for phrase recognition studied in this thesis are described as a
function R : X → Y, where X is the space of sentences and Y are all possible
phrase structures. The R function follows the general form:

R(x) = arg max
y∈Y

score(x, y) (3.1)

Here, the score function produces a plausibility score for a solution y being
the correct structure of the input sentence x. Potentially, the R function scores
all possible structures and selects the one with maximum score. In practice, the
scoring function at sentence level is a composition of several lower level decisions,
so that there exists a mechanism to efficiently explore the output space. We call
this mechanism the inference strategy, and will be discussed in the next section.
The difference in the models relies on the decomposition of the scoring function.
Defining a particular model concerns defining the following issues:

• A decomposition scheme to break down a global solution –a set of
phrases– into a number of parts which compose the solution. Such parts
can be, for example, the phrases which compose the solution, or some
tags assigned to words which allow to construct the solution. A particular
decomposition scheme implies constraints that dictate how local parts can
be combined to form a coherent global structure. In other words, out of
all possible combinations of local parts, those which satisfy the constraints
are those which correspond to valid phrase structures. Equivalently, the
model can be associated a generative mechanism to incrementally produce
a global structure by generating, in a time-line of decisions, a local part
at each step. Again, the generative mechanism must be correct –in that
the generated solutions are always valid phrase structures– and complete
–in that for each valid phrase structure there exists a (unique) sequence
of decisions which generates it.

• A set of learning functions to score parts, in accordance with the gran-
ularity of the decomposition scheme. These functions are trained from
data to predict a confidence score for a certain decision. Some functions
predict a plausibility score of assigning a phrase of some type to some part
of the sentence. Others decide whether a word starts or ends a certain
phrase. In all cases, a learning function receives some parameters describ-
ing the context of the decision, and outputs a real-valued score indicating
the plausibility of the decision: positive numbers indicate a plausible de-
cision, while negatives indicate non-plausible, and the magnitude of the
prediction indicates the confidence of it.

• An optimality criterion to select a solution. Such criterion follows the
form of the above equation. In particular, as we show below, a global
solution is scored by accumulating the predicted scores of the parts it

56 A Framework for Phrase Recognition

contains. Then, the selected solution is the one which receives higher
score.

3.2.1 Models at Word-Level

The idea behind word-based models is to represent a solution with a sequence of
tags, each of which is assigned to a word in the input sentence. Thus, the phrase
recognition problem is reduced to a sequence tagging problem, and sequential
learning techniques can be applied. This approach is specially suitable when
dealing with sequential phrase structures, since the underlying representations
into tags are very simple.

Formally, given a sentence x = [xi]
n
i=1, there is an output variable yi associ-

ated with each word xi. The model defines a set of tags T , and each variable
is assigned one of the tags, yi ∈ T . Finally, the model defines a set of con-
straints forcing a sequence of output variables to form a valid global structure.
Basically, such constraints correspond to the structural constraints of a solu-
tion –non-overlapping or non-embedding of phrases– expressed in terms of tag
assignments.

Then, a learning function is trained to recognize tags on words. This func-
tion, named scorew, predicts a confidence score for the assignment of a certain
tag to a certain word. Recognizing a phrase structure for a sentence corre-
sponds to find the best tagging along it, ensuring that the tagging is a well-
formed phrase set. A word-based model computes the score of a solution as the
summation of scores of word-tag assignments:

score(x, y) =

n∑

i=1

scorew(x, y, i, yi) (3.2)

In the expression, the scorew function predicts a score for assigning the tag
yi to the i-th word, in the context of a sentence x and a solution y.

We now discuss two well-known word-based models for recognizing sequential
phrase structures as a tagging task.

Begin-Inside-Outside In this reduction, each word in the sentence is tagged
either as the beginning of a phrase (B tag), a word inside a phrase (I tag), or
a word outside a phrase (O tag). Considering a phrase scheme of types in K, a
BIO model defines begin and inside tags for each type in K, and an outside tag
independent of the categories. Hence, there are 2|K|+ 1 tags. Figure 3.1 shows
a representation of the syntactic chunks of a sentence with BIO tags. Note that
two tags are needed for every type to differentiate a certain phrase in a span
from a sequence of contiguous phrases at the same span, all of the same type
–in the example, “noon” and “yesterday” are two contiguous NP chunks.

In this representation, a sequence of tags is valid if all maximal subsequences
of I-k tags are preceded by a B-k tag, where k is a phrase type. This constraint,
however, is not critical at interpreting an ill-formed sequence of tags: an I-k tag
not preceded by another I-k tag may be considered a B-k tag. A good property

3.2 Models 57

Original Sentence:

(The San Francisco Examiner)NP (issued)VP
(a special edition)NP (around)PP (noon)NP (yesterday)NP .

BIO Representation:

TheB−NP SanI−NP FranciscoI−NP ExaminerI−NP issuedB−VP

aB−NP specialB−NP editionI−NP aroundB−PP noonB−NP yesterdayB−NP .

Start-End Representation:

S−NPTheλ λSanλ λFranciscoλ λExaminerE−NP S−VPissuedE−VP

S−NPaλ λspecialλ λeditionE−NP S−PParoundE−PP S−NPnoonE−NP

S−NPyesterdayE−NP .

Figure 3.1: Example of BIO and SE taggings representing a sequential phrase
structure, corresponding to the syntactic chunks of a sentence. In SE tagging,
every word is associated two variables, one for start tags (preceding the word)
and another for end tags (following the word). λ represents a null assignment.

of this constraint –which is the only one of the model– is that it can be verified
looking only at every tag bigram: a tag I-k assigned to a word i, for some k,
is valid only if the tag assigned to word i−1 is B-k or I-k. Thus, structurally,
a certain tag only depends on its predecessor in the sequence, which directly
allows the use of Markov modeling –as it will be shown later in Section 3.3.1.

There exist many variations of the BIO tagging scheme. Originally, this rep-
resentation was introduced as IOB tagging by Ramshaw and Marcus [1995], but
there the B tag is used strictly when two phrases are contiguous. Symmetri-
cally to BIO, one can use IEO tags to mark inside-end-outside phrase words. In
general, one can use any combination of begin-inside-end-outside tags which,
in nature, better represents a phrase structure. Tjong Kim Sang and Veen-
stra [1999] and Kudo and Matsumoto [2001] experimented with several types of
taggings, and combinations of them, in the context of shallow syntactic parsing.

Start-End A start-end model defines start and end tags for each type in K,
resulting in a scheme of 2|K| tags. In this representation, a phrase of type k
receives the start tag (S-k) at the first word and the end tag (E-k) at the last
word, and no tags in the middle words. Note that when a phrase consists of
a single word, that word receives both tags, and that when a word is strictly
within a phrase, it receives no tag. Formally, the model can be thought as having
two variables per word: the first receives one of the start tags and the second
receives one of the end tags, and in either cases they can be assigned a null tag.
Figure 3.1 shows a sequential phrase structure represented with start-end tags.

This model imposes constraints for a sequence of tags to represent a valid,
well-formed phrase structure. The two enclosing tags of a phrase have to be of
the same type. When dealing with sequential structures, no tags can appear

58 A Framework for Phrase Recognition

between the start-end tags of a phrase. When embedding is allowed, the tags
enclosed within a phrase boundary structure must form a valid structure of
start-end tags. As opposed to BIO models, the structural constraints cannot
be expressed as relations between a certain tag and a fixed-length window of
previous tags. Thus, Markov modeling cannot be directly used. To overcome
this limitation, the models for chunking by Punyakanok and Roth [2004] aug-
ment the start-end tags (noted there as open-close) with two empty tags: one
for non-boundaries inside a phrase, and the other for non-boundaries outside
the phrase. With the augmented tag set, the constraints can be expressed as
Markovian dependencies.

3.2.2 Models at Phrase-Level

Working at phrase level provides a natural granularity for phrase recognition
models. Compared to word level, there is more flexibility at defining constraints,
since these can be expressed as relations between two phrases. Also, as we
will see, it increases the expressivity of the learning functions, in terms of the
possible features that can be extracted to represent learning instances. On the
other hand, moving from word to phrase levels increases the computational cost
of the phrase recognition strategy.

In phrase-based models, a global solution is decomposed into its phrases.
Figure 3.2 shows the collection of phrases of an example sentence. The phrases
of a solution are scored by a function, and the global score is defined as the
summation of scores of the phrases in the solution:

score(x, y) =
∑

(s,e)k∈y

scorep(x, y, (s, e)k) (3.3)

The scorep function, at phrase level, produces a confidence score for assigning
a phrase of type k to the span (s, e), in the context of a sentence x and a
candidate solution y.

The model can be formalized as follows. Given a sentence x of length n,
there is an output variable ys,e for each phrase span, that is, 1 ≤ s ≤ e ≤ n.
Let K′ be the set of possible phrase types K augmented with a null phrase type
λ, used as a special value indicating that certain span does not correspond with
any phrase. In phrase-based models, the phrase recognition task can be seen
as assigning values of K′ to variables ys,e. Note that with this formalization
a particular span can be assigned only one phrase. This might be not general
enough for phrase recognition tasks, where in some cases there several phrases,
of different types, at the same span. However, it is always possible to engineer a
fine-grained assignment in a span, having a fixed number of variables in it and
establishing some order for giving them values. This is the approach followed in
start-end tagging models, where each word has two variables. Also, in syntactic
parsing it is common to limit the recursivity of unary productions to a fixed
number. For simplicity of the framework, we assume tasks where at most one
phrase per span is possible.

3.2 Models 59

((The San Francisco Examiner)NP (issued)VP (a special edition)NP
(around)PP (noon)NP (yesterday)NP .)S

y = { (1, 12)S, (1, 4)NP, (5, 5)VP, (6, 8)NP, (9, 9)PP, (10, 10)NP, (11, 11)NP }

Figure 3.2: Example of a syntactic phrase structure represented as a collection
of phrases. Note that the clause, (1, 11)S, embeds all other phrases, which are
syntactic chunks.

Importantly, a set of constraints over an assignment dictates whether the as-
signment constitutes a valid phrase structure. The constraints encode structural
properties of the solution, and can be expressed as relations over every two pair
of phrases of a solution. In particular, in a valid solution two phrases cannot
overlap, and, for chunking tasks, phrases cannot be embedded. Note that here
the constraints are expressed as we did when formalizing phrase structures in
Section 3.1.

Thus, the general task is to find the best global assignment, in terms of
confidence score of phrase variables, which satisfies the set of constraints.

Phrase-Based Models with Start-End Filtering

In a sentence of length n, a phrase-based model considers a quadratic number of

variables, one for each phrase span. In particular, there are n2+n
2 phrase spans,

each of which may be assigned a phrase label in K, denoting a phrase in that
span, or a null label, denoting no phrase.

Evaluating straightforwardly the score of each phrase type at each span
might be computationally expensive. In that case, it might be desirable to
apply a filtering process which blocks some of the combinations of the scoring
process.

A phrase recognition model working at phrase level and extended with a
filtering component is expressed as follows:

R(x) = arg max
y∈Y | y⊆F(x)

∑

(s,e)k∈y

scorep(x, y, (s, e)k)

Let P be the set of all possible phrases for a sentence, as defined in Section
3.1, and recall that solutions are subsets of P satisfying the structural con-
straints. The function F is intended to filter out phrase candidates from P by
applying decisions at word level. A simple setting for this function is a start-end
classification for each phrase type: each word of the sentence is considered as
k-start —if it is likely to start a type-k phrase— and as k-end —if it is likely
to end a type-k phrase. Each k-start word xs with each k-end word xe, having
s ≤ e, form the phrase candidate (s, e)k. Assuming start and end binary clas-
sification functions, startk and endk, for each type k ∈ K, the filtering function

60 A Framework for Phrase Recognition

is expressed as:

F(x) = { (s, e)k ∈ P | startk(x, s) ∧ endk(x, e) }

Note that the start-end functions work at word level and are independent of
any solution y. Thus, this model can be organized in two levels of processing:
first, the filtering layer –which disables phrase candidates– and then the ranking
layer –which scores global solutions made of phrases that pass the filter and
selects the top-ranked.

In Chapter 4 we discuss in detail this filtering-ranking model, and propose
a Perceptron learning strategy to train the model learning functions.

3.2.3 Models in a Phrase Recognition Architecture

We now discuss the relation of models with the inference and learning compo-
nents of a phrase recognition architecture.

The score learning functions, as well as other learning functions the model
may define, make use of the input parameters to extract features from them.
Such features represent the context of the decision, and have to be expressive
enough so that it is possible to learn an accurate prediction rule for the function’s
decision. The actual extracted features depend on the particular task and the
nature of phrases to be recognized. As it will be shown, we will assume a
feature extraction function φ (a.k.a. representation function) that will represent
a decision and its context with a set of features. The design of the φ function is
related to domain and task knowledge. Therefore, an important aspect is that
the granularity at which the learning functions are defined allows to extract
features considered relevant for the task. For example, in phrase-based models
features can represent patterns of a complete phrase, whereas in word-based
models only features representing a word and its nearby context are possible.

A key issue related to the inference concerns the global solution y appearing
as a parameter in the input of the scoring functions. In practice, the inference
component will make use of the scoring functions while building incrementally y.
Thus, when predicting a confidence score, y will actually be a partial solution,
rather than a global solution. As a consequence, only features representing the
visible part of y are possible.

A different aspect, relating the model and the inference components, con-
cerns the solution space Y and the use of a resource which explains the structure
of it. As an example, in full syntactic analysis it is common to make use of a
grammar of the language to explore the solution space. In our framework, the
output space is that of all possible well-formed structures of phrases –i.e., those
in which phrases do not overlap and, occasionally, form hierarchies. In this sce-
nario, a grammar is seen as a knowledge resource for limiting the output space:
out of all solutions, only those which can be generated with grammar rules need
to be considered. The phrase recognition architectures of this thesis do not
make use of grammar-like resources, but consider all well-formed structures as
potential solutions. However, the employed inference strategies are essentially

3.3 Inference Algorithms 61

the same used for context-free grammar models. Thus, we want to point out
that the use of a grammar is compatible with the discussed models.

3.3 Inference Algorithms

Inference algorithms provide strategies to recover the best phrase structure for
a sentence, given a particular model with its scoring functions. Two properties
are of particular interest in these algorithms:

• Efficiency. A naive approach to find the best solution is to enumerate all
possible solutions, score them, and select the optimal one. However, the
output space (i.e., sets of phrases) is exponentially large with the length
of the phrase. We desire inference algorithms of polynomial time.

• Robustness. The learning functions of the model will never be perfect.
In the architecture, decisions are often chained, and errors on early pre-
dictions may severally degrade the accuracy of later decisions. Thus, we
desire inference strategies which are able to recover from local predic-
tion errors. This will be possible by checking the consistency of the local
predictions in a global context, with the aim that a local error will fur-
ther produce an inconsistency, or will lead to a non-plausible (low-scored)
global solution.

An inference strategy can be casted into a search scheme: given the space
of all possible global solutions, and the optimality criterion fixed in the model,
the inference strategy searches for the best solution for a given sentence.

The particular search strategy relies on the decomposition of the score func-
tion defined by the model. In the model, a global solution is broken down into
a set of parts (in our framework, tagged words or phrases). Accordingly, the
strategy consists of two related subtasks. First, visiting parts of the sentence
and assigning partial output structures to them. Then, combining partial struc-
tures of the different parts to form a global structure, checking the consistency
between parts with respect to the structural constraints of the model.

The general scheme for the inference algorithms discussed in this thesis com-
bines both subtasks, that is, solutions are built incrementally while computing
predictions. Figure 3.3 presents an algorithmic view of it. The strategy consists
of visiting parts of the input sentence in a fixed order. We assume a decomposi-
tion function D(x) which enumerates the sequence of parts of a sentence x. In
the time-line, at each time-step a new part is visited, with no backtracking. At
each part, a number of candidate partial solutions is maintained, noted as Yt in
the algorithm. When a part is visited:

• The list of partial solutions, Yt, is built by combining solutions of the
previously visited parts, Y0:t−1.

• Each partial solution is incremented with local structure on the current
part, checking that the incremented solution is coherent with respect to the

62 A Framework for Phrase Recognition

• Define a decomposition of the sentence x into a sequence of parts:
D(x) = [p1, . . . , pt, . . . , pT]

• Initialize pool of solutions to empty : Y0 = {λ}.

• Visit parts: For each pt ∈ D(x) do :

– For each well-formed solution y combined from Y0 . . . Yt−1

For each value v for pt consistent with y (including null):

∗ Increment y: y′ = y + (pt, v)

∗ Evaluate y′: score(x, y′) = score(x, y) + score(x, y′, pt, v)

∗ Add y′ to Yt

– Prune Yt : filter out non-plausible solutions from the set,
according to their score.

• Return arg max y∈YT
score(x, y)

Figure 3.3: A general inference scheme for recovering phrase structures

structural constraints. The score function is used to produce a confidence
value for the incremented part, which is accumulated to the global score
of the partial solution.

• Before leaving the part, the set of partial solutions is pruned, with two
different motivations. On the one hand, some solutions will not lead to the
optimal solution, and therefore can be discarded. On the other hand, for
efficiency reasons, the search can be made aggressive, and approximated,
by selecting only the best solutions under some heuristics.

After all parts have been visited, the candidate solutions of the last part,
YT , are complete solutions. Among them, the selected solution is the one with
highest score.

An important aspect of the inference strategy is whether, given a particular
model with trained functions, the strategy is exact or approximated. In other
words, whether it selects the top scored solution of Y, or might return a sub-
optimal of it. There are two conditions for the inference strategy to be exact,
related to dependencies established by the model on the parts of a decomposed
solution. Satisfying the dependencies implies exact inference. The dependencies
are the following:

• Structural Dependencies. These dependencies are imposed by the
structural constraints of the model. In incremental inference, a partial so-
lution in a certain part is built by combining partial solutions on previous

3.3 Inference Algorithms 63

parts, together with local structure for the current part. Only combina-
tions which satisfy the structural constraints are possible. Thus, the local
structure that can be assigned at a certain part depends structurally on the
partial solutions of previous parts. It may happen that some local assign-
ment is never considered because that assignment is not coherent with any
of the partial solutions on previous parts. If this situation is possible, the
inference strategy may lead to a sub-optimal solution. When the strategy
maintains enough partial solutions at each part so that all assignments
are possible in further parts, the inference is structurally exact.

• Feature Dependencies. When scoring a local assignment, the learn-
ing functions receive in the input the partial structure y which is being
incremented. This partial structure is used to extract features from it.
Let ϕ(y) denote the part of y from which features are extracted –that is,
score(x, y, pt, v) = score(x, ϕ(y), pt, v). For instance, ϕ(y) might be the
top-most phrases of y. As it will be shown in the next section, the quan-
tity predicted by a learning function depends linearly on the values of the
instance features. Thus, different values on an instance feature produce
different predictions, and such difference depends on a weight of the fea-
ture that is set during learning. Hence, the plausibility score of assigning
a value v to a part pt depends on the value of ϕ(y) from which features are
extracted. We call feature dependencies to the dependencies established
between the score of a local assignment and the part of y exploited with
features, ϕ(y). To guarantee exact inference, the strategy has to maintain
at a given part one solution for every possible instantiation of ϕ(y), so that
in a further part a certain assignment can be scored on the whole range of
ϕ(y) values. Note that these dependencies are established when designing
the representation of parts into features, in a particular task –a represen-
tation which is defined as a function Φ that transforms an instance into
a feature-vector representation. In some simple domains, it might seem
adequate to make the scoring of a part independent of its global structure
(ϕ(y) would be empty), resulting in a model with no feature dependen-
cies. In other domains, it might be necessary to condition on the global
structure, resulting in a recurrent architecture where predictions of early
steps are used as input values of the predictions of further steps.

The inference strategies we discuss go from exact to approximated explo-
rations. Exact explorations maintain at each part the necessary partial solu-
tions to satisfy structural and feature dependencies between local and further
assignments. To approximate the inference, and make it more efficient, condi-
tions are defined on the behavior of the score function, in such a way that some
solutions, considered non-plausible, can be discarded.

In the rest of the section we present instantiations of incremental inference
strategies for the models of the previous section, discussing technical details and
properties of the different variations. First we discuss inference in word-based
models, and then for phrase-based models. Finally, we discuss the influence of
the type of inference in a phrase recognition architecture.

64 A Framework for Phrase Recognition

3.3.1 Inference in Word-Based Models

In word-based models, learning is applied at word level. The scoring function
predicts a confidence score for assigning a certain tag to a certain word of the
sentence. Thus, the inference strategy consists of visiting words and assigning
tags to them, with the goal of building the best sequence of tags. The exploration
of a sentence x, of size n, is done sequentially in a certain direction. We assume
that words are visited from left to right, (x1, . . . , xn), although the same strategy
works from right to left (xn, . . . , x1).

Since the output in word-based models is a sequence of tags, let T denote the
set of possible tags, and let y denote a sequence of tags representing a solution
(rather than a solution itself), that is, y = [yi]

n
i=1, with yi ∈ T . For brevity, we

will denote as yr:s the subsequence of tags of [yi]
s
i=r.

Solutions are incrementally built while visiting words. After visiting the i-th
word, the partial solutions associated to that part will be of i tags, from word
1 to word i. After exploring the sentence, the solutions at word xn will be
complete.

Greedy Decoding An aggressive inference strategy consists of maintaining
only one partial solution in the exploration, named y. At the beginning, y is a
null sequence. Then, at the i-th word, in increasing order, y is incremented with
the corresponding tag, so before moving to the next word y is equivalent to y1:i.
We assume a function of the model, valid : T ∗ × T → {true, false}, indicating
whether augmenting a partial sequence y with a tag t forms a coherent partial
sequence. When visiting the i-th word of a sentence x, the selected tag is given
by the expression:

yi = arg max
t∈T |valid(y,t)

scorew(x, y1:i−1, i, t)

This greedy strategy favors the efficiency of the search. It does not guarantee
to select the optimal sequence of tags in terms of global score, both for feature
and structural dependencies. Concerning feature dependencies, the score func-
tions at word level receive in the input the partial tag sequence y1:i−1. If features
are extracted from it, then selecting the best local tag might conduce to a local
maximum. Concerning structural constraints, it may happen that selecting lo-
cally the optimal tag conduces to a suboptimal completion of the sequence. For
example, in BIO tagging, if a B tag is not assigned to a certain word, then the I

tags on subsequent words are not possible.

Viterbi Decoding under Markov Assumptions In Markov models, it is
assumed that a tag of the sequence at a certain position only depends on the
d previous tags, where d is the order of the model. In this case, the inference
mechanism is solved by the Viterbi algorithm, which can be explained as follows.
At each word xi, the pool of solutions Yi contains up to |T |d partial solutions,
one for each possible d-gram of tags except for those which are not coherent. For
generating the pool, each solution of Yi−1 is incremented with a valid tag for

3.3 Inference Algorithms 65

the current word. We assume a function, valid : T d × T → {true, false}, that
indicates whether concatenating a tag to a d-gram of tags forms a valid sequence,
with respect to structural constraints. Then, the generation of solutions at a
word xi is:

Y ′
i = { y = [y′, t] | y′ ∈ Yi−1 ∧ t ∈ T ∧ valid(yi−d:i−1, t) }

Each partial solution of Yi is scored by predicting the score of the current
tag and accumulating it to the score that the solution had in the previous step:

score(x, y = [y′, t]) = score(x, y′) + scorew(x, y, i, t)

Due to the Markov assumption, the partial solutions ending with the same d-
gram of tags will produce the same tags in further steps of the inference. Thus,
only the best solution for each d-gram needs to be maintained. The pruned
solution set can be expressed as:

Yi =
⋃

t∈T d

arg max
y∈Yi| t=yi−d+1:i

score(x, y)

When scoring a tag, the scorew function can extract features from the current
tag sequence y, which spans from word 1 to word i. Exact inference is guaranteed
as long as only features from yi−d+1:i are extracted.

The cost of the algorithm is linear with the length of the sentence n. How-
ever, it is important to note that the algorithm maintains |T |d partial solutions,
each of which is incremented at each step. Although it is independent of n, it
rapidly becomes a huge number when dealing with big tag sets or the order of
the dependencies d increases.

In practice, thus, it might be appropriate to make the search efficient, and
approximated, by maintaining only a beam of the best partial solutions at each
Yi, rather than the complete list associated to each d-gram.

A main drawback of Markovian sequence modeling in phrase recognition
tasks is that the independence assumption might be a quite strong assumption.
Computationally, it is feasible to work with dependency orders of 2 or 3, meaning
that a word tag can be determined looking only at the two or three previous
tags. However, it is common to find phrases which span a flexible number of
words, due to a recursive nature of them. Presumably, therefore, dependencies
between phrases occur in contexts of flexible size, rather than in a fixed window
of a few words.

3.3.2 Inference in Phrase-Based Models

Phrase-based models decompose the problem at phrase level, and rely on the
scorep function to predict a confidence score for a phrase candidate. The in-
ference problem is to incrementally build the best structure of phrases. The
strategy consists of visiting phrase spans and assigning phrases to them, with
the goal of building the best global phrase structure.

66 A Framework for Phrase Recognition

In a sentence of n words, the phrase spans can be represented as start-end
pairs (s, e), with 1≤ s≤ e≤n. The inference strategies we discuss explore the
sentence from the bottom up, in such a way that when visiting the (s, e) span
all the internal spans have been visited. This can be accomplished, for example,
by priorizing the length of the phrase, resulting in a CKY-style decoding:

Dp(x) = [(1, 1), . . . , (n, n)
︸ ︷︷ ︸

length 1

, (1, 2), . . . (n−1, n)
︸ ︷︷ ︸

length 2

, (1, 3), . . . (n−2, n)
︸ ︷︷ ︸

length 3

, . . . , (1, n)
︸ ︷︷ ︸

length n

]

Alternatively, the sentence can be processed from left-to-right, visiting phrase
spans up to a certain word:

Dp(x) = [(1, 1)
︸ ︷︷ ︸

end at 1

, (2, 2), (1, 2)
︸ ︷︷ ︸

end at 2

, (3, 3), (2, 3), (1, 3)
︸ ︷︷ ︸

end at 3

, . . . , (n, n), . . . , (1, n)
︸ ︷︷ ︸

end at n

]

At each phrase span (s, e), a set Ys,e of candidate partial solutions is main-
tained. After visiting the span, the set will contain all the recognized partial
structures formed of phrases found within the span. At the end of the pro-
cess, the selected solution is the top-scored structure of Y1,n. We first discuss
inference algorithms exploring the sentence in CKY-style. Then, we describe
left-to-right strategies.

CKY-style Cubic Inference in Phrase-Based Models

CKY-style inference visits first phrase spans which are shorter in length. This
allows an inference strategy with no structural dependencies, that is, at every
span all local assignments will be possible. 1 The strategy works as follows.
For building structure at a given span (s, e), we differentiate between the local
phrase, covering completely the span, and the internal phrases, strictly con-
tained in within.

The internal structure can be determined by choosing a splitting point m,
such that s≤m<e, which divides the span into a left part (from s to m) and a
right part (from m+1 to e). Recall that the partial solutions of all the internal
spans are already build, together with their scores, when visiting the span. Any
combination of a structure yL in Ys,m and another yR in Ym+1,e constitutes a
complete and well-formed internal structure for the current span. For recursion,
both yL and yR are well formed solutions, and since they correspond to disjoint
parts of the sentence, phrases in them cannot overlap nor embed.

As for the local phrase, covering completely the span, all types of phrases are
in principle considered as candidates for it2, while it is also possible to assign
the null tag, denoting no phrase at the span.

1In the original CKY, which applies to context-free grammar-based parsers, not all local
assignments are possible in a span, but only those that match with some rule of the grammar,
given the constituents found within the span in earlier steps. As it has been pointed out, in
this thesis we do not make use of grammars to guide the exploration.

2At this point, one could use a grammar to consider only combinations of internal structure
and local phrase that match some grammar rule.

3.3 Inference Algorithms 67

Finally, to generate the partial structure of a span, the local phrase and
the internal structure must be combined. At this point, the non-embedding
constraint must be considered. When dealing with sequential structure, the
non-embedding constraint is active. Thus, the partial structure of the span is
either the local phrase or the internal structure, and the score of each is used to
select the best. With hierarchical structure, in principle any internal structure
is compatible with any local phrase at the span. Note that such a combination
will result in a phrase structure where the local phrase embeds the internal
phrases.

We now enumerate all possible solutions in a span, when embedding is al-
lowed. Let K′ be the set of types K augmented with a null type indicating no
phrase. Assuming recursion, the potential set of partial solutions in (s, e) can
be formalized as:

Ys,e = { yL ∪ yR ∪ {(s, e)k} | s≤m<e ∧ yL∈Ys,m ∧ yR∈Ym+1,e ∧ k∈K′ }

Let ym
s,e denote the internal structure ys,m ∪ ym+1,e, with ys,m ∈ Ys,m and

ym+1,e ∈ Ym+1,e. Let ym,k
s,e denote the partial structure formed with ym

s,e and
the local phrase (s, e)k, possibly null since k ∈ K′. Each solution in Ys,e is
scored as:

score(x, ym,k
s,e) = score(x, ys,m) + score(x, ym+1,e) + scorep(x, ym

s,e, (s, e)k)

The above enumeration is exhaustive and grows exponentially with the
length of the span. Thus, it is not tractable and some assumptions must be
made to limit the exploration. In any case, the inference strategy works at least
in cubic time, since there is a quadratic number of phrase spans, and at each
one there is a linear number of splitting points to be considered. We now discuss
some possibilities for limiting the exploration in a span, by increasing order of
computational cost:

• Independence between internal structure and local scoring. In
this case it is assumed that the best internal structure in a span can be
determined independently of the local phrase. With this assumption, only
one partial structure needs to be maintained at each span, noted ys,e,
which is determined in two steps. The first step is to select the optimal
splitting point between s and e:

m = arg max
s≤m<e

score(x, ym
s,e)

With it, the internal structure is formed, ym
s,e = ys,m ∪ ym+1,e. Then, the

possible local phrase in (s, e) is considered. To do so, each possible type
in K is tried, and the top scored is selected:

k = arg max
k∈K

scorep(x, ym
s,e, (s, e)k)

In the case that the score associated to the optimal type k is negative,
no local phrase would be inserted to ys,e (which can be seen as assigning

68 A Framework for Phrase Recognition

the special null type to the local phrase, with 0 score). This strategy is
approximated when the scorep function extracts features from the internal
structure ym

s,e, since the local score depends on the internal structure, but
only the selected ym

s,e is considered for choosing the local phrase. If no
features are extracted, inference is exact.

For sequential phrase structures, this assumption is quite reasonable. Due
to the non-embedding constraint, it is not possible that a phrase contains
other phrases in within. Thus, it makes sense to score a phrase inde-
pendently of its internal structure, since we know that it must be empty.
3

• One solution per span. A closely related approach is to assume that
the optimal global solution is composed of optimal partial solutions, that
is, each of the substructures is optimal at its corresponding span. With
this assumption, only one partial structure needs to be maintained at each
span, the one with the best score. To select it, the strategy will explore
all possibilities, by optimizing the best splitting point and the best local
phrase dependently:

(m, k) = arg max
s≤m<e, k∈K′

score(x, ym
s,e) + scorep(x, ym

s,e, (s, e)k)

This strategy considers at each span (e− s+ 1)∗ |K′| possibilities. Among
them, the top-scored partial structure is the one selected for the span.
Note that this strategy treats the local scoring dependently of the internal
structure. However, extracting features from the internal structure will
make the inference approximated.

• Several solutions per span. The last strategy is based on maintaining
several solutions at each span, under some criterion which permits the
overall exploration in polynomial time. The generation of solutions is
exhaustive: for each splitting point between s and e, all combinations
of solutions from the left and right part are considered, together with a
value in K′ for the local phrase. The crucial point in this approach is
the criterion for maintaining a limited number of solutions at each span.
Several options exist, such as:

– Beam. Only the top scoring N solutions are maintained. Alterna-
tively, we can select the solutions with score at most δ from the best
scored solution.

– Only positive phrases. Phrases with a non-positive confidence score
are discarded. The feasibility of this approach obviously depends
on a scorep function which predicts negative scores for non-plausible
phrases. If so, we can assume that only a limited number of phrases
will score positively, and the space of generated structures is tractable.

3However, in this case we may wish to predict the score of a phrase given the neighboring
phrases –as discussed below in left-to-right inference.

3.3 Inference Algorithms 69

– ϕ-equivalence classes. We define that two partial structures are ϕ-
equivalent if their ϕ structure is the same. We then maintain only
the best solution for each ϕ-equivalence class. For instance, we may
define that ϕ(y) is the top-level structure of the partial solution y.
With it, consider two different partial structures in a span which
share the same local phrase: these structures are ϕ-equivalent, hence
only the top scored one is selected. Note that the top-level structure
of a partial solution is not necessarily the local phrase: in partial
structures with no local phrase (i.e., null assignment in local phrase),
the top-level structure is a mixed sequence of phrases (at a lower level
of the span) and input words. This inference strategy, using a notion
of ϕ-equivalence to maintain only the best solution of each class, is
guaranteed to be exact as long as the scoring function extracts fea-
tures only from the ϕ part of a partial solution. This is the type
of inference used in parsing with context-free grammar formalisms.
There, the dependencies of the data are expressed via rule produc-
tions, which relate a constituent –the left-hand side of the rule– with
its the top-level internal structure –the right-hand side of the rule.

Left-To-Right Quadratic Inference for Phrase-Based Models

In this inference strategy, the sentence is explored from left to right along words.
At each word i, all phrase spans ending at that word are considered, with
increasing order of length. The enumeration of phrase spans is as follows:

Dp(x) = [(1, 1)
︸ ︷︷ ︸

end at 1

, (2, 2), (1, 2)
︸ ︷︷ ︸

end at 2

, (3, 3), (2, 3), (1, 3)
︸ ︷︷ ︸

end at 3

, . . . , (n, n), . . . , (1, n)
︸ ︷︷ ︸

end at n

]

The scheme is of quadratic cost, since there is a quadratic number of visited
spans and the operations at each span will be kept simple enough to be of
constant cost. Depending on whether the output phrase structure is sequential
or hierarchical, we differentiate two inference algorithms:

Phrase-Based Sequential Inference In this case it is assumed that any
subsequence of the optimal phrase sequence is optimal in its context. The
strategy maintains a solution at each ending word i, yi, which is the opti-
mal phrase structure in the (1, i) span. For convenience, we assume an empty
solution in y0. When visiting the ending word i, the strategy searches for
the best point j, with 0 ≤ j < i, and the best type k ∈ K′, such that
score(x, yj) + scorep(x, yj , (j +1, i)k) is maximum. Note that, here, the scor-
ing of the phrase (j+1, i) receives a partial structure yj containing phrases to
the left of the target phrase, while in CKY-style inference the partial structure
was in within. Importantly, conditioning the scoring of a phrase on features
extracted from yj violates the assumption that a partial solution is optimal in
its context. So, if there are feature dependencies between a phrase score and its
preceding phrases the strategy is an approximation, otherwise it is exact. This

70 A Framework for Phrase Recognition

inference procedure is equivalent to the one introduced in Punyakanok and Roth
[2001, 2004], where, interestingly, the strategy is described as a reduction to the
shortest path algorithm for graphs, where the graph compactly represents all
valid phrase structures.

Greedy Inference for Hierarchical Phrase Structures In this case it is
assumed that the scoring functions produce a positive score for correct phrases
and a negative score for incorrect ones —that is, the score function is assumed
to behave as a typical binary classifier. Only one solution is maintained, y,
which initially is set to empty. When visiting a phrase span (s, e), first it is
checked whether a phrase (s, e)k, for some k ∈ K, is coherent with y (in terms
of non-overlapping). If it is coherent, the type k ∈ K with better confidence
in scorep(x, y, (s, e)k) is selected, as long as the score is positive. If it is not
coherent, then it is not considered. Note, therefore, that the exploration does
not satisfy the structural dependencies for being exact: deciding for a certain
phrase (s, e) invalids all phrases (s′, e′) such that s < s′ ≤ e and e < e′, which
still have not been explored.

Here, when scoring a particular phrase, the solution y will contain the in-
ternal structure of the phrase, as well as the phrases to the left of the current
phrase.

This strategy is completely greedy, and requires a scoring function which pro-
duces little error. In particular, the only recoverable type of error corresponds
to predicting a positive score for an incorrect phrase (s, e)k1; the strategy will
recover from it as long as there exists a correct phrase in the same span, (s, e)k2,
and the correct one receives higher score than the incorrect one.

3.3.3 Inference in a Phrase Recognition Architecture

So far, we have discussed models for phrase recognition based on scoring pre-
dictors at word or phrase level, and a variety of inference strategies for them.
The difference between inference strategies concerns the robustness of the ex-
ploration. On the one hand, exact strategies exploit all possible dependencies
established by the model, and guarantee that the predicted global solution is
the one receiving highest score, given the model functions. On the other hand,
approximated strategies rely on assumptions on the scoring functions to discard
partial solutions, before reaching a context at which such solutions can be safely
considered non-optimal.

Eventually, the scoring functions are trained from data. As we show in the
next section, supervised learning provides techniques to induce a pre-specified
behavior to the function being learned. Therefore, the efficacy of a phrase
recognition architecture depends on the feasibility to accurately learn scoring
predictors that behave as assumed when designing the inference strategy.

For example, assume that the gold behavior of the scoring functions is to
predict a positive score for correct local assignments, and a negative score oth-
erwise. If we were able to learn such function, with perfect accuracy, then the

3.4 Learning Algorithms for Phrase Recognition 71

most greedy inference strategy would recover always the correct structure in the
most efficient way.

At this point, two questions are of particular interest. First, what level
of exploration and robustness is required so that the assumed behavior for the
score functions is learnable. Second, once the functions have been learned, which
is the improvement, in terms of global accuracy, achieved by robustifying the
inference (i.e., to which extent we can recover from local prediction errors).

The following section presents techniques to learn scoring functions for a
phrase recognition architecture. The presented questions will be studied empir-
ically in later chapters, experimenting with particular phrase recognition tasks.

3.4 Learning Algorithms for Phrase Recognition

In this section we describe techniques to obtain the learning functions of a phrase
recognition architecture, using machine learning.

Each of the learning functions for phrase recognition –such as scorew, scorep,
start, end– receive in the input a number of structures and values which, to-
gether, represent a learning instance. Such input parameters usually include the
sentence, some partial structure, and a specific part of the structure to which
we are willing to assign a value. The goal of a learning function is to predict a
value for the part. We can view this prediction as a classification task, in which
the learning function selects the best value for the input instance. Eventually,
the learning function receives the instance together with a proposed value, and
predicts a confidence score for that assignment, so choosing the best value for
the instance corresponds to choosing the value with highest confidence score.

We assume a representation function Φ which takes an instance and extracts
features from it. The output of the Φ function is a vector indexed by the feature
space: each component of the vector corresponds to one feature, and the value
of the component is the value of the feature in a particular instance. In general,
the range of each feature is a number in IR, although in practice most of the
features will be binary-valued. Thus, we assume that learning instances are
represented as a feature vector in IRn, where n is the number of features that
the Φ function considers.

We restrict our attention to learning functions of the form of linear functions:
for each feature, the learning function maintains a weight parameter indicating
the contribution of that feature to the prediction. The learning problem is then
to estimate the weights of the linear function, in a supervised manner. In the
following subsection, we review how classification and ranking learning problems
are modeled with linear functions, and we describe the notion of margin of a
prediction. Then, we present an extended version of the classical Perceptron
algorithm, as a simple margin-based learning algorithm to estimate the weights.
Finally, we discuss how these techniques can be applied to train the learning
components of a phrase recognition architecture.

72 A Framework for Phrase Recognition

3.4.1 Linear Functions for Supervised Classification and
Ranking

Linear functions are hyperplanes in a IRn space, parametrized by a weight vector
w, specifying the normal vector of the hyperplane, and a bias b, which is the
distance from the hyperplane to the origin when w is normalized. Accordingly,
the hypothesis space of linear separators is the set of all hyperplanes in IRn,

H = { hw,b | w ∈ IRn, b ∈ IR }

A linear function computes the following prediction for an instance x be-
longing to IRn :

hw,b(x) = 〈w,x〉 + b

Here, 〈w,x〉 is the inner product, computed as
∑n

i=1 wixi, which expresses
a similarity score between the input and weight vectors. For simplicity in the
notation, sometimes we will be omitting the bias b of a hyperplane, assuming
that it is encoded in the weight vector w as a special component w0 = b, and
that instances have such component set constant to 1, x0 = 1. Note that the
prediction expression is equivalent.

Binary Classification In binary classification the output space is Y = {−1, +1}.
In this setting, a linear function induces the following classification rule:

hw(x) = sign(〈w,x〉) =

{
+1 if 〈w,x〉 > 0
−1 otherwise

Decision Confidence and Margin The decision rule above for binary clas-
sification has a clear geometric interpretation. A hyperplane w is formed by
the set of points z in the Euclidean space IRn that satisfy 〈w, z〉 = 0. Thus,
a hyperplane is dividing the input space into two regions or half-spaces: the
+1 region, for points falling on the positive side of the hyperplane; and the -1
region, for points falling on the negative side. The set of points lying on the hy-
perplane is called the decision boundary, and arbitrarily takes one of the labels,
in our setting -1.

Given an instance x, the quantity d = 〈w,x〉 is geometrically the distance
from the hyperplane w to the instance x. As explained, the sign of d determines
the predicted class. It is intuitive to interpret the magnitude of d as a natural
measure of confidence on that prediction. A closely related concept is that of
margin of a training example (x, y), expressed as:

γw(x, y) =
y 〈w,x〉

‖w‖

Note that γw(x, y) > 0 only when correct classification is produced, and if
it is much greater than 0 then the example has been classified correctly with

3.4 Learning Algorithms for Phrase Recognition 73

high confidence. Theoretical work of Vapnik [1998] states that hyperplanes
which induce large margins on the training examples have justifiably good gen-
eralization properties. This principle, therefore, constitutes a strategy for the
design of learning algorithms. The most prominent learning algorithm is Sup-
port Vector Machines (SVM), which explicitly seeks for the linear separator that
maximizes the margin in a training sample. Cristianini and Shawe-Taylor [2000]
or Burges [1998] introduce SVMs and the main results of the learning theory
related to margin. Other binary classification learning algorithms, such as the
classical Perceptron [Rosenblatt, 1958; Freund and Schapire, 1999] or AdaBoost
[Schapire, 2002], have also been explained through margin analysis, though not
being originally designed to make margins large.

Ranking functions for Multiclass Output Spaces In multiclass predic-
tion problems, an instance x in IRn belongs to a label of a finite set Y of
cardinality k. For convenience, we assume that the labels are Y = {1, . . . , k}. It
is usual to implement a multiclass prediction function with the so-called winner-
take-all scheme, consisting of k linear functions in IRn, one for each label, w1

to wk. Then, the multiclass function follows the form:

h
w

1:k(x) = arg max
i∈Y

〈wi,x〉

That is, the predicted label is the one whose corresponding weight vector
achieves the highest similarity score. The confidence of a prediction increases
with the difference between the score of the correct label and the score of the
rest of the labels. Consequently, the margin of the prediction is defined as the
difference between the score of the correct label and the maximum among the
scores of the rest of he labels. Formally, if (x, y) is an example, the margin is:

γ
w

1:k(x, y) = 〈wy,x〉 − max
i6=y

〈wi,x〉

As a note, the k weight vectors w in IRn can be seen as a single global vector in
IRkn, corresponding to the concatenation of the k vectors. With these definitions
of a multiclass function and the margin of a prediction, there exist learning
algorithms to train the weights of the multiclass function so that margins in a
sample are positive [Crammer and Singer, 2003b; Har-Peled et al., 2002]), or
maximum [Crammer and Singer, 2001].

Ranking functions for Complex Output Spaces A more complex level
of prediction problem is found when the output space is structured. This is the
case of the problems we are dealing with in this thesis, in which the input space
corresponds to sequences of words which form sentences, and the output space
are phrase structures in a sentence of some nature. In this scenario, the output
space is of exponential size with respect to the length of the input sentence.
First, it is infeasible to enumerate the possible values in the output space Y.
But also, the output structures have a clear recursive nature, and therefore it

74 A Framework for Phrase Recognition

is inadequate to treat two structures with common substructure as completely
different output values.

In the general setting of complex spaces, we rely on a representation function
Φ(x, y) which takes an input instance x together with an structured output
value y and produces a feature vector in IRn. Then, we define a linear function
parametrized by w which ranks input-output pairs. The resulting function
computes a prediction as:

hw,Φ(x) = arg max
y∈Y

〈w, Φ(x, y)〉

Similarly to the multiclass setting, the predicted value is the one which
maximizes the score. However, due to the exponential size, the learning models
here rely on properties of the structures of Y and the representations induced by
Φ to design efficient inference algorithms which select the top-ranked solution
in polynomial time (e.g., dynamic programming algorithms). The margin of a
prediction for an example (x, y) is defined as:

γw,Φ(x, y) = 〈w, Φ(x, y)〉 − max
y′∈Y,y′ 6=y

〈w, Φ(x, y′)〉

To our knowledge, margin-based learning for structured domains was first
introduced by Collins [2004, 2002], which proposed a Perceptron algorithm to
train the parameters. Recently, maximum-margin algorithms for this scenario
have also been proposed [Taskar et al., 2003, 2004; Tsochantaridis et al., 2004].

3.4.2 Perceptron Algorithms

The Perceptron learning algorithm is one of the simplest algorithms to train
a linear function. It was introduced by Rosenblatt [1958] for binary classifica-
tion. We show how the original Perceptron is extended to multiclass and struc-
tured learning scenarios, following respectively Crammer and Singer [2003b] and
Collins [2002].

Perceptron is an online learning algorithm that, supervisedly, trains the
weights of a linear function so that it makes no error on the training sample. In
other words, the learning bias of the Perceptron is to make prediction margins
of the training examples positive. It can be proved that if the training sample
is linearly separable (i.e., there exists a vector of parameters that makes all
prediction margins positive), then the Perceptron algorithm will converge.

As an online algorithm, the type of update it performs is of additive nature.
Perceptron is conceptually simple and easy to implement. Also, it is a kernel
method, so it can benefit from a kernel function to implicitly induce non-linear
separators, or exploit the recursiveness of the structures.

Basic Perceptron

In binary classification, where Y = {+1,−1}, the Perceptron algorithm works
as follows. It starts with the weight vector w arbitrarily initialized to 0. Then, it

3.4 Learning Algorithms for Phrase Recognition 75

visits examples in the training set sequentially, one at a time. Given an example
(x, y), its prediction is computed using the current vector, as ŷ = sign〈w,x〉. If
the predicted value is not correct, the vector is updated additively: w = w+yx.
This update rule encodes the two types of errors which are possible in this
scenario. If the example was positive but the prediction was negative, the
weight vector is moved toward that example, promoting its weight. On the
other hand, if the example was negative but the prediction positive, the weight
vector is moved away from the example, demoting its weight.

Generalized Perceptron

We now describe a generalized version of the Perceptron which applies to binary,
multiclass and structured learning scenarios. Figure 3.4 shows the pseudo-code
of the algorithm. In the extension setting, instances x belong to some space X
and are to be classified into an output space Y. We then assume a representa-
tion function Φ which takes a pair (x, y) and outputs a feature vector in IRn.
The prediction function, parametrized by a weight vector w ∈ IRn, is of the
form: hw(x) = arg max y∈Y〈w, Φ(x, y)〉. The learning problem is to train the
w parameters with training data. As in the original Perceptron, the algorithm
visits examples online. At a given example (x, y) it first computes the prediction
ŷ = hw(x), and if it is not correct the parameter vector is updated. The update
rule consists of promoting the correct solution y and demoting the predicted
solution ŷ.

Perceptron for Binary Classification We fix now the setting to be binary
classification, with Y = {+1,−1}. Following Crammer and Singer [2003b], we
define the learning components so as to show that the generalized Perceptron can
be particularized to the above-described original Perceptron. For convenience,
we assume instances x to be in IRn. The w vector will be composed of 2n
dimensions, as w = (w+1,w−1), where both w+1 and w−1 are in IRn. Moreover,
it will be accomplished that w−1 = −w+1. Finally, the function Φ(x, y) embeds
the vector x ∈ IRn in a 2n-dimensional space: if y = +1 it outputs (x, 0n),
otherwise it outputs (0n,x). With this definitions, it is easy to see that the
extended Perceptron behaves as the original version for binary classification,
the only difference being that in the extended version we redundantly maintain
two parameter vectors of n dimensions.

Perceptron for Multiclass Classification We now move to a multiclass
scenario, with Y = {1, . . . , k}. Again, we assume instances x ∈ IRn. The w
vector is composed of kn dimensions, maintaining a chunk of n dimensions for
each label. Similarly to the binary case, the Φ function embeds a pair (x, y)
into a kn-dimensional vector, mapping the x vector into the corresponding y-th
chunk of dimensions, Φ(x, y) = (0(y−1)n, x, 0(k−y)n) ∈ IRkn. In this case, the
behavior of the update rule is as follows. Suppose that for an instance x the ŷ
label is predicted, while y is the correct one. This implies that ŷ received more
weight than y. Thus, the update rule demotes the parameters corresponding to

76 A Framework for Phrase Recognition

ŷ and promotes the ones corresponding to y. In the multiclass scenario, there
exist other ways of updating the parameter vector, in which not only the top-
ranked incorrect label is demoted, but all labels which receive a similarity score
higher than the score of the correct label [Crammer and Singer, 2003b].

Perceptron for Structured Classification When the output space Y is
complex and structured, the learning mechanism of the Perceptron is the same:
it visits examples so as to find incorrect predictions, and corrects the parameter
vector on each error with a pair of promotion-demotion additive updates. Collins
[2002, 2004] shows that the key point which makes learning possible is that
the representation defined by the model –in terms of features of Φ and the
corresponding parameters w– allows efficient inference to compute the arg max .
This property can be accomplished by defining a representation based on the
parts of a decomposed solution, as discussed in Section 3.2, and use the inference
algorithms of Section 3.3. Let D(x) be a decomposition of a sentence x into
parts. Let φ be a feature extraction function representing a part pt of a solution
y, and let yt be the value of the part in the solution. The global feature function
is defined as:

Φ(x, y) =
∑

pt∈D(x)

φ(x, y, pt, yt)

The global vector w has a weight parameter for each feature of Φ (or φ).
Thus, shared parts of two different solutions share also the same parameters in
the model (as opposed to the multiclass version, where each label has its own
parameters). The inference process is then:

hw(x) = arg max
y∈Y

〈w, Φ(x, y)〉 = arg max
y∈Y

∑

pt∈D(x)

〈w, φ(x, y, pt, yt)〉

Extensions for Perceptron

In this section we present two extensions that can be incorporated to Perceptron.
The first is about averaging the predictions of Perceptron, that has been shown
to increase robustness. The second concerns the use of kernel functions.

Voted Perceptron Freund and Schapire [1999] introduced the Voted Percep-
tron algorithm, a modified version of the original algorithm that uses votes to
make predictions more robust. The key point of the voted version is that, while
training, it stores information in order to make more robust predictions on test
data. Specifically, each prediction vector wj generated after every mistake is
stored, together with a weight cj that is set during training. In particular, when
a vector is generated its weight is set to one, and for each correct prediction it
makes its weight is incremented by one. In other words, the weight of a vector
counts how many examples the vector survives until a mistake is committed.
Let J be the total number of vectors that a Perceptron accumulates. The final

3.4 Learning Algorithms for Phrase Recognition 77

Input: A labeled training set {(x1, y1), . . . , (xm, ym)},
with xi ∈ X and yi ∈ Y

A feature extraction function Φ : X × Y → IRn

Output: The weight vector w ∈ IRn

initialize: w = 0;
repeat

for i = 1, . . . ,m do:
ŷ = hw(xi) = arg max y∈Y〈w

i, Φ(x, y)〉
if ŷ 6= y then

w = w + Φ(xi, yi) − Φ(xi, ŷ)
until no changes in w during the epoch

Figure 3.4: The Generalized Perceptron Learning Algorithm

hypothesis is an averaged vote over the predictions of each vector, computed
with the expression:

hw(x) =

J∑

j=1

cj(wj · x)

This expression corresponds to the averaged prediction method. The authors
also propose a voted prediction method which takes the sign of each wj · x,
instead of the real value. In the experimental section we show that both methods
substantially outperform the unweighted prediction expression of the Perceptron
(denoted last by the authors, since it only makes use of the last vector, wJ).

Dual Formulation and Kernels Freund and Schapire [1999] show that in
Perceptron the weight vector w can be expressed as a linear combination of
the training instances that were added or subtracted during training. Consider
a training sample of m examples, each of the form (xi, yi). Let αi be a vari-
able counting how many times Perceptron updated the weight vector using the
example xi, and note that such updates are either additions or subtractions
depending on the sign yi. It follows that:

w =

m∑

i=1

αiyixi

The weight vector is called the primal form of the linear hyperplane. On
the other hand, the vector of αi’s, equivalently expressing the same linear hy-
perplane, is called the dual form of the hyperplane. Due to this equivalence,
learning can be thought either as estimating the weights in w or the dual vari-
ables αi.

78 A Framework for Phrase Recognition

An important result of the research related to SVMs is the use of kernels
when working with the dual form. A kernel function is a function efficiently
computing the inner product between two instances in an extended feature
space. The motivation for using kernels is that in the extended space the data
might be better separated. For example, there are kernel functions that induce
a non-linear transformation.

When a learning algorithm, working in dual form, uses a kernel function, it
is operating in the extended feature space. Thus, though estimating a linear
number of parameters (i.e., the αi’s), it might learn a non-linear separator in
the original space.

The class of learning methods that admits kernels is known as kernel methods
[Schölkopf and Smola, 2002], and Perceptron and SVMs belong to it.

Kernel methods are particularly interesting for structured domains, such as
phrase recognition tasks, since convolution kernels allow to work with exponen-
tial feature spaces consisting of all subsequences or trees [Haussler, 1999; Collins
and Duffy, 2002] .

3.4.3 Learning in a Phrase Recognition Architecture

In the current section we have presented a range of learning techniques to learn
a linear function from data, all of them designed through the concept of margin
of training examples. Here, we briefly discuss different learning strategies for
training the functions of a phrase recognition architecture. In later chapters,
these strategies will be discussed more technically, and will be empirically tested
on particular architectures and natural language problems.

In this discussion, we will assume that the model of the architecture is fixed,
and that the feature extraction function needed by the predicting functions is
also defined. Thus, from a learning point of view, the representation of solutions
and the parameters of the architecture will be the same in all cases. For instance,
consider that the problem is to train a phrase-based architecture, with a single
predicting function to score phrases. We assume the existence of a training
set consisting of a collection of sentences, each paired with its correct phrase
structure, referred to as gold structure. The learning strategy defines how to
train the functions of the architecture so that for each training sentence the gold
structure is optimal according to the model (with generalization guarantees
on it). Still, if the inference strategy is not exact (and, thus, the selected
solution may not be optimal) we may wish to train the functions according
to the inference strategy, so that the output of the inference is the correct
solution. Thus, an important aspect of the learning strategy is to enforce a
behavior to the learning functions that respects the assumptions of the inference
strategy. Related to learning scenarios for linear functions, we differentiate three
alternative ways of modeling a score function.

First, one can think of having k binary classifiers, each associated to a class
in K, deciding whether a certain span is a phrase of the corresponding type or
not. In this case, each classifier is independent from the others. For training
them, a training set is derived for each one from the collection of sentences. In

3.5 Summary 79

particular, for a class k, phrase spans in the collection which are of class k are
positive examples for the classifier, while all other phrase spans are negative
examples. At prediction time, the magnitude of a prediction –whose sign deter-
mines positive or negative classification– provides the confidence measure of the
score function. This approach is known as the one-versus-all strategy, since for
each class we are willing to learn a linear separator between the class’ examples
and the rest of them. Note that, for the ultimate goal of the architecture, this
assumption is quite strong. Looking at any of the inference mechanisms, to
achieve correct recognition it suffices that the correct class receives higher score
than any of the competing classes, rather than a positive score for the former
and negative scores for the laters.

As a second choice, one can think of the score function as a multiclass classi-
fier, predicting a confidence score for each class in K′, but also selecting which is
the most plausible class –namely, the top-scored class. In this case, the training
set consists of the phrase spans of the sentence collection, each paired with the
class of span. Note that one of the classes here will be the null class, indicating
that the span is not a phrase. Although there exist many valid techniques for
learning a multiclass classifier, a reasonable choice is the Perceptron approach
for multiclass classification discussed above. There, |K′| linear separators –one
for each class– are trained dependently to make the prediction of the correct
class higher than any other, but without enforcing a negative score for incorrect
classes. Thus, the one-vs-all limitation is naturally solved. Still, a score function
modeled as a multiclass classifier is independent from the particular architec-
ture. Specifically, the inference strategy selects a local assignment not only on
the basis of its confidence score, but also for its coherence within a globally
scored structure. These interactions, at the global context of the sentence, are
not considered in multiclass training.

Finally, the score function can be globally modeled at sentence level. As
shown with Perceptron, the score function at sentence level corresponds to a
composition of score functions at phrase level. In particular, the score of a
structure is the addition of scores of the phrases it contains. The parameters
of the score function at sentence level are the same than the parameters of
the score function at phrase level. Because of this property, such parameters
can be trained at global level. In this setting, thus, an example is directly a
sentence with its phrase structure. Recall that this learning strategy requires
an inference algorithm to recover the top-scored solution of a sentence, for some
value of the parameters being trained. Obviously, the inference algorithm is
that of the phrase recognition architecture. Thus, in this setting the scoring
functions are trained dependently of the inference.

3.5 Summary

In this chapter, we have discussed techniques to implement the main compo-
nents of a phrase recognition architecture. We have presented models that put
learning at word or phrase levels. Then, we have discussed incremental in-

80 A Framework for Phrase Recognition

ference strategies for such models, that go from greedy to robust explorations
of the output space. Here, the success of a greedy search will depend on the
success of predictors at guessing the correct values for each decision. Finally,
we have presented classification and ranking learning scenarios, and we have
shown how Perceptron can be used to train linear functions in such scenarios.
We have also discussed the application of these learning techniques to train a
phrase recognition architecture, yielding training strategies that are either local
or global. Overall, we have discussed a number of choices in the design of a
phrase recognition system.

The next chapter introduces a learning architecture that can be though as a
particular choice within this framework for phrase recognition. It also presents
a global training algorithm for the architecture, and illustrates the empirical
behavior of it, contrasted with that of a local training strategy.

Chapter 4

A Filtering-Ranking
Learning Architecture

This chapter proposes a novel learning architecture to recognize a set of phrases
in a sentence. We name it Filtering-Ranking Architecture.

The chapter is organized in three sections. The following section describes
the filtering-ranking architecture (model and inference). Next, Section 4.2
presents FR-Perceptron, a global learning algorithm to train the learning func-
tions of the architecture. Finally, Section 4.3 presents extensive experiments on
a Partial Parsing task, namely Clause Identification, with the aim of showing the
behavior of FR-Perceptron on real data. We give evidence that a global learning
strategy is much better than a local approach, at least with our filtering-ranking
architecture. Then, in Chapter 5 we describe in detail three applications of the
filtering-ranking architecture to phrase recognition tasks, and contrast the re-
sults of FR-Perceptron with other systems in the literature.

4.1 Filtering-Ranking Architecture

This section describes a phrase recognition architecture based on filters and
rankers. The decomposition of the problem has two layers of processing: filter-
ing, operating at word level, and ranking, operating at phrase level. The filtering
layer identifies plausible phrase candidates with start-end decisions. The rank-
ing layer scores phrases and builds the best phrase set for the sentence. We first
present the model that decomposes the global problem into many decisions.
Then, we discuss the inference strategy that computes the best structure for a
sentence. Finally, we define how the learning functions of the architecture are
implemented, and which are the parameters that a learning algorithm has to
estimate to train the architecture.

Notation. Let X be the input space of sentences, and Y be the output space
of possible phrase structures. Let P be the space of possible phrases. We define

82 A Filtering-Ranking Learning Architecture

Y as the sets of phrases in P that form a coherent structure. This definition
allows either sequential or hierarchical structures, and affects only the type of
inference performed (see a more formal definition in Section 3.1). For simplicity
in notation, we will assume that P and Y are restricted to phrases and structures
that do not fall outside a given input sentence x ∈ X .

4.1.1 Model

The model for recognizing phrases is described as a function R : X → Y which,
given a sentence x ∈ X , identifies a phrase structure y ∈ Y for x. We define
two components within the R function, both being learning components of the
recognizer. First, we define a filtering function F which, given a sentence x,
identifies a set of candidate phrases, not necessarily coherent, for the sentence,
F(x) ⊆ P. Second, we define a score function which, given a phrase, produces
a real-valued prediction indicating the plausibility of the phrase in its context.
Thus, the Phrase Recognizer (R) is a function that searches a coherent phrase
set for a sentence x according to the following optimality criterion:

R(x) = arg max
y⊆F(x) | y∈Y

∑

(s,e)k∈y

score(x, y, (s, e)k) (4.1)

That is, the global score of a solution y is the summation of scores of the
phrases it contains. The score function predicts the score of a phrase in the
context of a sentence x and a solution y.

The function F is only used to reduce the search space of the R function. Note
that the R function constructs the optimal phrase set by evaluating scores of
phrase candidates, and, that there is a quadratic number of possible phrases with
respect to the length of the sentence (that is, the size of P set). Thus, considering
straightforwardly all phrases in P would result in a very expensive exploration.
We propose a particular F function aiming at substantially reducing phrase
candidates by applying start-end decisions at word level. That is, we assume
two classifiers, namely start and end, that predict whether a word starts or ends,
respectively, a phrase of type k ∈ K in the sentence. With these classifiers, the
filtering function can be expressed as:

F(x) = { (s, e)k ∈ P | start(x, s, k) = +1 ∧ end(x, e, k) = +1 }

In total, the architecture is composed of three learning functions, namely
the pair of start-end filters and the score function.

4.1.2 Inference

Inference is the process that efficiently searches the optimal phrase structure for
a sentence, according to the optimality criterion 4.1. Here, we briefly comment
an incremental inference process for a filtering-ranking decomposition. A more
detailed look at inference strategies for phrase-based models is found in Section
3.3.2.

4.1 Filtering-Ranking Architecture 83

The filtering functions depend only on the sentence x. Thus, the set of
candidate phrases for a sentence can be obtained independently of the ranking
process. For start-end filtering, the process corresponds to a sequential predic-
tion along the words of the sentence. In the most simpler version, the words
of the sentence are processed from left-to-right. At the i-th word, the start-end
functions are applied for each phrase type. It is possible to exploit dependen-
cies between start-end predictions at different words, and then use more robust
sequential inference techniques (see Section 3.3.1). After this processing, the
classification outcomes (for each word and type) determine the set of phrase
candidates: each k-start word xs paired with each k-end word xe, having s ≤ e,
form the phrase candidate (s, e)k.

Ranking, then, consists of building the top-scored structure made of phrase
candidates. To do so, each phrase candidate is visited and scored, in some
particular order that permits inference. Depending on the complexity of phrase
structures, we differentiate two strategies:

• Phrase Sequences. Phrases are visited by increasing order of ending word.
At each ending word, the optimal phrase structure from the beginning
of the sentence to that word is computed, considering coherent combi-
nations of optimal phrase structures at previous words (recursive step)
with phrases ending at the current word (local step). The process is of
quadratic cost.

• Phrase Hierarchies: Phrases are visited from the bottom-up, that is, by
increasing length of the phrase span. In a span, the optimal phrase hi-
erarchy for the span is computed, considering coherent combinations of
hierarchies found within the span (recursive step) with the phrase that
covers the whole span (local step). The process is of cubic cost.

The main assumption of these inference strategies is that a certain predic-
tion is independent of other predictions. In practice, this is not true in the
experimentation with real data. On the one hand, the start-end functions make
use of the classifications that have been predicted on previous words. On the
other hand, the score function makes use of the the solution y that contains
the phrase to be scored in order to extract contextual features, and y is in turn
determined by earlier predictions of the score function. So, in practice, the
inference strategies we use are approximated.

An Example of Filtering-Ranking Recognition

Figure 4.1 depicts an schematic example of how the process of recognizing a
hierarchical structure of phrases works, considering generic phrases without type
for simplicity. In this example, we assume a correct solution and values for the
predictions of the learning functions made during the process.

The input sentence is represented at the bottom as a sequence of words
x1 . . . x15, each being a small black circle. The correct phrase structure of the
sentence is represented as a bracketing along the words, and contains the fol-
lowing phrases:

84 A Filtering-Ranking Learning Architecture

Negative Score

Positive Scores
+

+
+

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

((()))))))((()((

Correct

Missed

Over−predicted

Figure 4.1: Schematic example of the filtering-ranking recognition strategy.

(1, 15) (2, 5) (3, 5) (7, 14) (8, 10) (8, 14) (11, 14) (13, 14)

To recognize phrases, first the start-end functions are applied to each word.
In the figure, an oblique dashed line indicates each positive classification: for
words predicted as start (x1, x2, x6, x7, x8, x11, x13) the line goes to the right,
whereas for words considered end (x5, x10, x12, x14, x15) the line goes to the left.
Note that these local predictions produce errors, such as the missing start at
x3. The intersections of dashed lines correspond to phrase candidates, printed
as circles. For instance, the start word x7 together with the end word x14 forms
the phrase candidate (7, 14). Note that in the filtered space there are only 27
phrase candidates out of the 120 possible phrases.

After filtering, the score function is applied to phrase candidates. The grey
scale of circles indicates the prediction to each candidate: white indicates nega-
tive predictions (candidates to be rejected), while greys indicate three positive
degrees of confidence for phrases. The sentence is processed by visiting phrase
candidates from the bottom-up and, while predicting confidence values for can-
didates, the optimal structure at the explored region is maintained. Thus, the
score applied to a phrase can take advantage of the predicted solution found
within the phrase. For instance, when scoring the phrase (7, 14) a hierarchy of
four phrases is found inside (marked in the figure with a solid line that roots
the hierarchy to the phrase). This fact allows to work with representations that
exploit patterns of the internal structure of a phrase, possibly by means of kernel
functions.

After scoring all candidates and completing the sentence exploration, the
global optimal structure is also built. The phrase structure that maximizes
confidence scores consists of the following phrases:

(1, 15) (2, 5) (6, 14) (7, 14) (8, 10) (8, 14) (11, 14) (13, 14)

In the figure, the predicted phrases that are correct are marked with a circle,
while there is only one predicted phrases that is not correct, namely (6, 14), and

4.2 Filtering-Ranking Perceptron 85

is marked with a square. The precision of the prediction for the sentence is 7/8.
There is also one correct phrase that is missed in the solution, namely (3, 5),
appearing as a triangle. Recall is thus 7/8. Note that among all local errors
produced in the process by the three functions (e.g. predicting x12 as end, or
giving (2, 10) a positive confidence), only three are critical at propagating to
the global solution: predicting x3 as not start, predicting x6 as start, and giving
(6, 14) a positive score.

4.1.3 Learning Components of the Architecture

The learning functions of the architecture are implemented with linear separa-
tors on a feature space defined by a representation function (see Section 3.4.1
for a detailed description of linear separators).

The filtering function (F) is composed of two classifiers, start and end, each
of which predicts whether a word xi starts (s) or ends (e) a phrase of type k,
respectively. We implement the F function with a start-end pair of prediction
vectors for each phrase type k ∈ K, noted as wk

S or wk
E, and a unique shared

representation function φw which maps a word in context into a feature vector.
A classifier prediction on a word xi for a type k is computed as start(x, i, k) =
wk

S · φw(x, i), and similarly for end(x, i, k), and the sign is taken as the binary
decision.

The score function computes a real-valued score for a phrase candidate
(s, e)k. We implement this function with a prediction vector wk for each type
k ∈ K, and also a shared representation function φp which maps a phrase
into a feature vector. The score prediction is then given by the expression:
score(x, y, (s, e)k) = wk · φp(x, y, (s, e)k).

4.2 Filtering-Ranking Perceptron

Training the learning functions of the phrase recognizer, namely the start-end
and the score functions, presents the following challenges:

• The learning algorithm should optimize the sentence-level F1 measure,
rather than the accuracies of local decisions.

• During the recognition process, the functions interact. First, the start-
end functions define the actual input space of the score function. Second,
in the general case (hierarchical structures) the score function is applied
recursively on its own recognized structure (i.e., a solution y is built from
the bottom-up by adding new phrases). Thus, the learning strategy should
take into account such interactions.

• The score function operates at phase level, predicting confidence scores
for phrase candidates. There is a quadratic number of phrase candidates
over the sentence length. Thus, given a dataset of real size, generating
all possible phrase candidates produces a vast amount of examples, most

86 A Filtering-Ranking Learning Architecture

algorithm FR-Perceptron

input: a training set S = {(xi, yi)}m
i=1

define: W = {wk
S,wk

E,wk | k ∈ K}

initialize: ∀w ∈ W w := 0

for t = 1 . . . T

for i = 1 . . . m

ŷ := RW (xi)

recognition learning feedback(W,xi, yi, ŷ)

output: the vectors in W

end-algorithm

Figure 4.2: Pseudocode for the FR-Perceptron algorithm

of them being negative candidates. So, the algorithm should be efficient
at training the score function in terms of the number of phrase examples
considered.

In this section we introduce a mistake-driven online learning algorithm for
training the parameter vectors of the Phrase Recognizer. It is a global algorithm
that works at sentence level, and concentrates on the global accuracy of the
predicted structures. The parameter vectors are trained all together, aiming
to capture their interactions to cope with the above challenges. We name the
algorithm FR-Perceptron, since it is a Perceptron-based learning algorithm that
approximates the prediction vectors in F as Filters of words, and the score
vectors as Rankers of phrases.

4.2.1 The Algorithm

The algorithm, presented in Figure 4.2, is a generalization of the traditional
Perceptron (see Section 3.4.2 for a review of Perceptron and generalizations).
It works as follows. It starts with all vectors initialized to 0, and then runs
repeatedly in a number of epochs T through all the sentences in the training
set. Given a sentence, it predicts its optimal phrase solution as specified in
(4.1) using the current vectors. As in the traditional Perceptron, if the predicted
phrase structure is not perfect the vectors responsible of the incorrect prediction
are updated additively within a feedback rule. We propose a feedback rule
specially tailored for recognizing phrases with filtering-ranking functions. The
next section describes the feedback rule.

4.2 Filtering-Ranking Perceptron 87

4.2.2 Filtering-Ranking Recognition Feedback

The recognition-based feedback is described as a function that receives four
parameters in the input, namely the set of weight vectors W , a sentence x,
and the correct y and predicted ŷ phrase structures on the sentence. The rule
updates the vectors in W according to the errors of ŷ contrasted with y.

Notation. Let ŷk,i
S and ŷk,i

E stand respectively for the local predictions of
start-end functions on word i and type k, at prediction time. Let ŷk

s,e be the
prediction of the score function on phrase candidate (s, e)k at prediction time.
Assume similar variables for the gold structure y, the values for them being
perfect {+1,−1}-predictions indicating whether a word starts/ends a phrase, or
whether a phrase belongs to the solution.

The function is defined by cases as follows:

1. Phrases correctly identified: ∀(s, e)k ∈ y∩ŷ:

• Do nothing, since they are correct.

2. Missed phrases: ∀(s, e)k ∈ y\ŷ:

• Update misclassified boundary words (type-A promotion updates):

if (ŷs,k
S ≤ 0) then
wk

S := wk
S + φw(x, s)

if (ŷe,k
E ≤ 0) then
wk

E := wk
E + φw(x, e)

• Update score function, if applied:
if (ŷs,k

S > 0 ∧ ŷe,k
E > 0) then

wk := wk + φp(x, y, (s, e)k)

3. Over-predicted phrases: ∀(s, e)k ∈ ŷ\y:

• Update score function:
wk := wk − φp(x, ŷ, (s, e)k)

• Update words misclassified as S or E (type-B demotion updates):

if (ys,k
S = −1) then
wk

S := wk
S − φw(x, s)

if (ye,k
E = −1) then
wk

E := wk
E − φw(x, e)

The updates of the start-end vectors are performed only once per word, although
an incorrect prediction on a word may generate several incorrect phrases.

This feedback rule has been derived by analyzing the dependencies between
each function and a global solution, and naturally fits the phrase recognition
setting. In particular, the rule tracks the interaction between the two layers
of the recognition process as follows. The start-end layer filters out phrase

88 A Filtering-Ranking Learning Architecture

candidates for the scoring layer. Thus, misclassifying the boundary words of
a correct phrase blocks the generation of the candidate and produces a missed
phrase. In this case, we move the start or end prediction vectors toward the
misclassified boundary words of a missed phrase. When an incorrect phrase is
predicted, we move away the prediction vectors from the start or end words,
provided that they are not boundary words of a phrase in the correct solution.
Note that we deliberately do not care about false positives on the filtering layer
which do not finally over-produce a phrase, since these local errors do not hurt
the global performance of the recognizer. This fact is crucial at explaining the
filtering behavior of the Start-End layer.

Regarding the Score layer, each category prediction vector is moved toward
missed phrases and moved away from over-predicted phrases. It is important to
note that the feedback rule operates only on the basis of the global predicted
solution ŷ, avoiding to update the score function on each of its local predictions
on phrase candidates. This fact has the effect of approximating the behavior of
the score function as a ranker over the set of candidate phrases, assigning higher
predictions to the phrases in the solution than to the other incorrect competing
phrases. As a consequence, this simple feedback rule tends to approximate the
desired behavior of the global R function, that is, to make the summation of
the scores of the correct phrase set maximal with respect to other phrase set
candidates. In the experimental section of this chapter, we show this effect in
the context of clause identification.

4.2.3 Binary Classification Feedback

Before discussing the FR-Perceptron algorithm with the proposed feedback rule,
we want to describe an alternative feedback rule that updates the prediction vec-
tors to behave as binary classifiers. That is, the start-end functions are expected
to predict positive magnitudes only for correct boundaries, and the score func-
tion is expected to predict positive magnitudes only for correct phrases. The
feedback rule supervises each local prediction that has been computed when
processing a training sentence, and updates additively the prediction errors.
Assuming the same notation that in the previous section, the feedback rule is
expressed as follows:

1. Update incorrect start predictions:

• foreach i, k such that (yk,i
S ŷk,i

S ≤ 0) do

wk
S := wk

S + yk,i
S φw(x, i)

2. Update incorrect end predictions:

• foreach i, k such that (yk,i
E ŷk,i

E ≤ 0) do

wk
E := wk

E + yk,i
E φw(x, i)

3. Update wrong predictions on phrases that have passed the filter:

• foreach (s, e)k ∈ F(x) do

4.2 Filtering-Ranking Perceptron 89

– if (ŷk
s,e≤0 ∧ (s, e)k∈y))

wk := wk + φp(x, y, (s, e)k)

– else if (ŷk
s,e >0 ∧ (s, e)k 6∈y))

wk := wk − φp(x, ŷ, (s, e)k)

With this feedback rule, the learning algorithm is also global, in the sense
that the algorithm works at sentence level. However, since each prediction vec-
tor is updated for each local prediction error it commits, few global interactions
between predictors are captured. Rather, the functions are trained indepen-
dently at the same time. In particular, the only interaction that is taken into
account is that the score function concentrates on the actual phrase candidates
determined in the filtering layer, rather than on all possible phrase candidates
for a sentence.

4.2.4 Discussion on the FR-Perceptron Algorithm

The recognition-based update strategy of the FR-Perceptron is ultraconservative
in the way defined by Crammer and Singer for multiclass classification [2003b] or
category ranking problems [2003a]. Many online algorithms are mistake-driven
or conservative, in the sense that the prediction vectors are only updated on
examples on which prediction errors are made. The notion of ultraconservative
online algorithms stands for update rules which modify only the prototypes
corresponding to mistakes in the global solution of an example. As Crammer
and Singer [2003b] point out, an ultraconservative algorithm is also conservative.
Furthermore, in binary classification a local prediction is directly the global
solution, therefore the two definitions coincide. The difference is relevant in
scenarios where there is some kind of inference that produces a global solution
given the local predictions, which is the case of multiclass classification, ranking,
and structured-output problems. Hence, in our case, the binary classification
update rule of Section 4.2.3 is just conservative, because it explicitly corrects all
local prediction errors. On the other hand, the recognition-based feedback of
Section 4.2.2 is ultraconservative, because it looks only at the predictions which
are responsible for global errors. Other ultraconservative versions of Perceptron,
for multiclass and structured recognition problems, are revised in Section 3.4.2.

Related to the notion of conservativeness, in [Har-Peled et al., 2002] a gen-
eralized constraint classification framework is proposed. This general setting
allows to model, in such ultraconservative way, multiclass and multilabel clas-
sification problems, and ranking problems which can be expressed with order
relation pairs.

Directly related to FR-Perceptron are the global linear models for parsing
and tagging by Collins [2002, 2004], which apply to solution spaces of expo-
nential size. In this family of models, a sentence-solution pair is represented
in a feature vector, and a weight vector in the same dimensionality produces
a prediction score for that pair. Then, the learning problem consists of esti-
mating the weight vector so that the correct solution is ranked the highest. In

90 A Filtering-Ranking Learning Architecture

[Collins, 2002], a Perceptron algorithm is presented for tagging problems, work-
ing with representations for which there exists a decoding algorithm that, given
the weight vector, picks the top-ranked solution for a sentence in polynomial
time (using dynamic programming). Basically, the online learning algorithm
runs the decoder on a given example and then updates the weight vector ul-
traconservatively, looking only at the mistakes found in the top-ranked global
solution. FR-Perceptron can be seen as an instance of this basic algorithm,
and, in fact, the score functions are trained as in [Collins, 2002] (see proof be-
low in subsection 4.2.5). However, FR-Perceptron extends Collins’ algorithm
by training also a filtering component which, working at word level (linear with
the sentence length), discards solutions and makes the decoding process more
efficient in terms of the number of candidates considered at the phrase level
(quadratic with the sentence length).

As in all ultraconservative algorithms mentioned, the type of update of FR-
Perceptron on each function has a global effect in the sense that interactions of
functions are captured and they become dependent. The learning approach is
driven so as to optimize the global accuracy of the recognizer, rather than local
accuracies of each individual function. Also, by learning online from the output
of the decoder, the algorithm naturally selects the most informative instances
out of the quadratic number of possible phrase candidates. As we show ex-
perimentally in the next section, the algorithm effectively models the functions
as word filters and phrase rankers, which contributes positively on optimizing
the F1 measure on precision-recall. We also provide empirical evidence in fa-
vor of the FR-Perceptron with respect to learning strategies which train the
components independently.

4.2.5 Convergence Analysis of FR-Perceptron

Acknowledgement: The following result was mainly derived by Jorge Cas-
tro. We thank him for his contribution.

In this section we discuss a convergence result for the FR-Perceptron algo-
rithm. The result we present depends on some restrictive hypotheses and has
to be seen only as a first step in the task of achieving a deep and more useful
analysis. The complete proof can be found in Appendix A.

The convergence proof we give is based on the proof by Novikoff [1962] for the
basic Perceptron algorithm as much as on the proof presented by Collins [2002]
for the Perceptron-based sequence tagging algorithm. Assuming separability for
the Phrase Recognition function and linear separability for each of the start and
end classifiers, the number of errors committed by the learning algorithm can
be upper bounded.

To simplify the analysis, we do not consider phrase types in the solution, so
we only deal with three prediction vectors, namely start (wS), end (wE) and
score (w).

Without the filtering component, our algorithm is the same than the algo-
rithm analyzed by Collins [2002], which is proved to converge if the training

4.2 Filtering-Ranking Perceptron 91

sample is separable (i.e., there exists a vector w∗ that, for each training sen-
tence, perfectly ranks the correct output structure higher than any competing
structure).

The start-end filtering functions can be seen as general binary classifiers.
Thus, if we assume that the training sample is Start-End separable (i.e., there
exist vectors w∗

S and w∗
E that perfectly indicate whether each word of the train-

ing sample is a start/end or not), the classic result by Novikoff’s bounds the
number of start/end errors that Perceptron commits during learning.

Our proof departs from these two results. It shows that FR-Perceptron
trains together the score function (trained as in Collins [2002]) on the top of the
filtering functions (trained as binary classifiers), and that the type of updates
FR-Perceptron performs permits the convergence of the two layers, as if they
were trained separately. The following theorem bounds the number of errors of
FR-Perceptronon the training set:

Theorem 1 For any training set S = {(xi, yi)}m
i=1 separable with margin δ > 0

and Start-End separable with margin γ > 0, it holds:

1. The number of learning feedbacks that affect to the start-end vectors (se-lf
stages) is bounded by 2R2

SE/γ2, where RSE = max1≤i≤m, 1≤j≤ni
‖φw(xi, j)‖.

2. After a learning feedback stage l that has affected the start-end vectors
(se-lf stage) there are at most

max

(

m − 1,
R2

δ2
+

2‖wl
0‖

δ

)

consecutive learning feedbacks that only affect to the score vectors (score-

lf stages). Here, wl
0 is the vector w when the updates corresponding to

stage l have been just made, and R is a constant such that (∀i : 1 ≤ i ≤
m) (∀z : z ∈ Ŷ(xi)) (||

∑

p∈yi φp(xi, yi, p) −
∑

p∈z φp(xi, z, p)|| ≤ R).

3. As a consequence of the previous two points, the FR-Perceptron algorithm
makes a finite number of errors on the training set. When no more errors
occur the total number of errors committed by the algorithm is bounded by

2R2
SE

γ2

(

1 + max

(

m − 1,
R2

δ2
+

2MAX

δ

))

,

where MAX is the maximum of the values ‖wl
0‖ at any se-lf stage.

This convergence result (developed in detail in Appendix A) gives insight
into the FR-Perceptron learning algorithm, but it has two drawbacks. First,
it relies on very restrictive assumptions (two separability hypotheses). Second,
the upper bound claimed in the theorem does not illustrate the goodness of FR-
Perceptron over the classical approach that considers two independent training
steps. Note that assuming both separability hypothesis, this bound is worse
than the bound one gets for independent training (i.e., the summation of the

92 A Filtering-Ranking Learning Architecture

training errors at each step). One of the goals of future work is to improve the
convergence proof. We would like to find a convergence result that does not
assume full start–end separability. Ideally, it had to show that the algorithm
works well even if the start–end classifiers make one–side errors. In addition,
the new proof had to provide a tighter bound on the number of errors. Here, one
hopes to show a bound at least as good as the bound for the classical approach
when training on samples having both separability hypotheses.

4.3 Experiments on Partial Parsing

In this section, we describe a series of experiments with FR-Perceptron on a
partial parsing task, in the context of the CoNLL-2001 Shared Task : clause
identification [Tjong Kim Sang and Déjean, 2001]. The goal is to recognize
hierarchies of syntactic clauses, with no differentiation on the type of clauses.
See Section 1.1.2 for a more detailed description of this problem.

In the following subsection we summarize the final settings and practical
details of FR-Perceptron, and present the evaluation results of the architecture
on the task. Then, the next subsections present several experiments, compar-
ing the proposed learning algorithm to alternative learning strategies for the
architecture, and showing the empirical behavior of each strategy in different
situations.

In Chapter 5 we show more experimental results of the filtering-ranking
architecture on three phrase recognition tasks. In that chapter, we provide
much more details about the application of the architecture to Natural Language
problems. We also contrast the results we obtain with those of other systems
developed for the same tasks.

4.3.1 Experimental Setting and Results

In this section we briefly sketch some final settings of the filtering-ranking ar-
chitecture. We also show the results that we obtain on the problem data. A
more detailed description of the system appears in the next chapter.

The main challenge of Clause Identification problem is the hierarchical na-
ture of the clause structures in a sentence. Since there is no differentiation on
clause types, the model is composed by three functions: the start filter, the end
filter and the score ranker.

φw and φp Representation Functions. For the start-end filters, the repre-
sentation function (φw) consists of a window of features centered at the target
word, that extracts forms, part-of-speech tags and chunk information of the
neighboring words. For the score function, the representation function (φp) de-
scribes a clause candidate by means of many features that capture the structure
of it, taking into account the relative pronouns, verbs, chunks, clauses found
within the candidate, and punctuation marks. See next chapter for a detailed
list of the features used in this task.

4.3 Experiments on Partial Parsing 93

 80

 82

 84

 86

 88

 90

 92

 94

 96

 0 5 10 15 20 25 30 35 40 45 50

gl
ob

al
 F

 M
ea

su
re

Number of Epochs

Last
 81

 82

 83

 84

 85

 86

 87

 88

 89

 0 5 10 15 20 25 30 35 40 45 50

gl
ob

al
 F

 M
ea

su
re

Number of Epochs

Last
Voted

Averaged

Figure 4.3: Learning curve on Clause Identification. Left plot: training set in
last prediction mode. Right plot: development set in last, averaged and voted
modes.

Polynomial Kernels. All results presented in the experimentation were ob-
tained using polynomial kernels of degree two. Initial tests with a linear kernel
revealed a very poor performance.

Voted Perceptron. The Perceptron-based learners of the architecture in-
corporate the results of Freund and Schapire [1999] on Voted Perceptron (see
Section 3.4.2 for a detailed description). As we show below, the results we ob-
tain in test data with averaged predictions are better that those obtained with
standard Perceptron predictions. Also, the convergence is also much better.

Results

We trained the model for up to 50 epochs on the training data. Figure 4.3
shows the performance of the model (F1 measure) on the training data (left
plot) and on the development data (right plot). Clearly, the learning curve on
the training set shows that the learning strategy effectively benefits the global
F1 measure on the task through the learning epochs. However, the performance
gets stable around 96, indicating that the training set is not separable under
the current choice of features and kernel. Looking at the performance on the
development set, the model shows a good generalization curve, with the best
results over 88% and with no significant overfitting. Although at epoch 50 the
FR-Perceptron has not converged, the generalization performance seems to be
stable from epoch 20, showing only minor decreases in further epochs.

Looking at the three prediction methods, both the averaged and the voted
methods perform substantially better than the default last method. Throughout
the experimentation in this section, we compute averaged predictions for all
Perceptron versions used

94 A Filtering-Ranking Learning Architecture

4.3.2 Local vs. Global Learning

In the FR-Perceptron setting, all the functions are trained together online via
recognition feedback. In this experiment we compare the FR-Perceptron to
alternative learning settings in which training is based on a binary classification
penalty. That is, each function is understood as a binary classifier: the start-
end functions decide whether a word is or not a boundary word, and the score
function decides if a phrase belongs to a solution or not. In this context, each
prediction a function has made is subject to correction, and updated when the
sign is not correct. We consider two versions of the classification-based strategy,
and compare them to FR-Perceptron. Briefly, the three strategies are:

• Independent Local Classification. Trains each function independently, with
a batch binary classification algorithm optimizing the local accuracy.

• Global Online Classification. Trains globally the three functions at the
same time, with an online binary classification algorithm optimizing each
local accuracy. It corresponds to the algorithm in Figure 4.2 using the
feedback rule of Section 4.2.3.

• Global FR-Perceptron. Trains globally the three functions at the same
time with the online FR-Perceptron, that concentrates only on the global
accuracy. It corresponds to the algorithm in Figure 4.2 using the feedback
rule of Section 4.2.2.

The following two subsections explain details on how we trained the classi-
fication models. Then, we provide comparative evaluation results and discuss
the benefits of FR-Perceptron over the classification approaches.

Learning Independent Local Classifiers (local-VP,local-SVM)

Each local function is trained separately from the others with a batch learning
algorithm for binary classification. We selected two algorithms which work in
the same hypothesis space than FR-Perceptron (kernel-based linear functions):
the batch version of the Voted Perceptron (local-VP), and soft-margin Support
Vector Machines (local-SVM)1. For training, we generated three data sets from
training sentences, one for each function. For the start-end sets, we consid-
ered an example for each word in the data, except those breaking chunks. For
the score classifier, it is not feasible to generate one example for each possi-
ble phrase candidate in the data, since this generation would produce 1,377,843
examples with a 98.2% proportion of negatives. A first direct approach is to gen-
erate only phrase candidates formed with all pairs of correct phrase boundaries,
which greatly reduces the number of negative examples. However, the resulting
score classifiers are trained in a context in which perfect identification of phrase
boundaries is assumed, which is not the real situation when running on the top

1We used the SVMlight package by Joachims [1999], available at
http://svmlight.joachims.org.

4.3 Experiments on Partial Parsing 95

Algorithm Generation #Neg. %Neg. Precision Recall F1

local-VP goldSE 26,374 51.50 83.84 80.55 82.16
local-SVM goldSE 26,374 51.50 84.31 82.83 83.57
local-SVM θ = 0 28,165 53.14 88.14 82.85 85.41
local-SVM θ = −0.3 28,747 53.64 88.34 82.76 85.46
local-SVM θ = −0.5 29,145 53.99 88.46 82.61 85.43
local-SVM θ = −0.7 29,610 54.38 88.54 82.48 85.41
local-SVM θ = −0.9 30,432 55.06 88.91 82.58 85.63
local-SVM θ = −1.0 59,498 70.55 91.12 81.27 85.91
local-SVM θ = −1.1 97,101 79.63 91.49 80.80 85.82
local-SVM θ = −1.2 120,856 82.95 91.33 80.51 85.58
local-SVM θ = −1.5 240,463 90.64 92.31 78.01 84.56

Table 4.1: Performance on the Clause Identification development set when train-
ing the functions of the model separately as classifiers. In the first two models,
the examples for the score function are generated using the gold start-end words
(goldSE). For the models below, phrase examples are generated with the learned
start-end functions, considering words with with a start-end prediction higher
than a threshold θ. In any case, the number of positive training examples is
24,841, whereas the number of negative examples is shown in the third column.
The percentage of negative examples is shown at the fourth column.

of learned start-end functions. Table 4.1 shows the overall performance of the
system running with local-VP (averaging predictions) and local-SVM classifiers.
As it could be expected, local-SVM perform better than local-VP. But, clearly,
the performance is much lower than with FR-Perceptron, suggesting that the
score functions in this setting are not robust enough.

To overcome this limitation, we generated new training samples for the score
function, now considering the actual behavior of the learned start-end functions.
The approach is similar to the one we used in [Carreras et al., 2002b]: first the
learned start-end functions are applied to the words in the training data; then,
phrase candidates are generated considering pairs of boundary words whose
prediction is above a certain threshold θ. Besides, the positive phrases are always
generated. Thus, this procedure only adds the negative phrase candidates which
pass the threshold θ. We performed several trials only with local-SVM, first
selecting θ and then the C regularization parameter of the SVM. This threshold
was only used for generation of training examples. When testing, the filters
were used as usual, with threshold at 0. Table 4.1 summarizes the results.
Note that, by considering predicted boundaries in training, the precision of the
system easily improves 4 points. However, as the amount of negative instances
substantially increases, the recall goes down. The best performance for batch
models was found using a threshold of -1.0, with local-SVM. We will use this
model to compare against other learning settings.

96 A Filtering-Ranking Learning Architecture

 76

 78

 80

 82

 84

 86

 88

 90

 0 5 10 15 20 25

gl
ob

al
 F

 M
ea

su
re

Number of Epochs

FR-Perceptron
global-VP
local-SVM

Figure 4.4: Performance on the Clause Identification development set for differ-
ent learning settings: the FR-Perceptron model, and classification-based models
trained with VP in the online setting (global-VP) and with local-SVM in the
batch setting.

Learning Online Global Classifiers (global-VP)

In this setting all functions are trained together online with the Voted Per-
ceptron algorithm, visiting one sentence at a time, and providing binary clas-
sification feedback to each function for each prediction. Given a sentence, the
start-end functions are first applied to each word and, according to their positive
decisions, phrase examples are generated for the score function. In this way, the
input of the score function is dynamically adapted to the start-end behavior.
The particular algorithm is similar to FR-Perceptron in that it works globally at
sentence level. However, instead of giving the recognition-based feedback rule of
Section 4.2.2 to update the functions, it uses the binary classification feedback
presented in Section 4.2.3. We trained the online classification model for up to
25 epochs, and tested it with averaged predictions.

Comparative Results

Figure 4.4 shows the learning curve in terms of the F1 measure of the two online
models, together with a straight line corresponding to the performance of the
best local-SVM batch model. Clearly, the performance of the FR-Perceptron is
better than those of the classification–based models. At any epoch, the curve is
more than 2 points higher than the one of the online classification-based model
(global-VP). This fact gives empirical evidence in favor of the recognition–based
feedback for learning in phrase recognition problems. Below, we provide more

4.3 Experiments on Partial Parsing 97

Development Test
Model T Prec. Recall F1 Prec. Recall F1

local-SVM - 91.12 81.27 85.91 89.18 77.92 83.17
global-VP 19 91.06 80.62 85.52 89.25 77.62 83.03
FR-Perceptron 20 90.56 85.73 88.08 88.17 82.10 85.03

Table 4.2: Results on the Clause Identification development and test sets, for
different learning settings: the FR-Perceptron model and the classification-based
models trained batch with SVM and online with VP (global-VP). The number
of epochs used for testing (T) has been optimized on the development set, as
well as parameters of the SVM.

results showing why the recognition feedback guides the learning strategy much
better than the classification feedback.

Looking at classification-based models, SVM performs slightly better than
global-VP. However, the SVM model has been obtained after tuning the gener-
ation of negative phrases, taking into account the learned start-end functions.
It is worth to recall that when training straightforwardly the score function
with correct boundaries (see Table 4.1), the SVM model performs more than
two points worse than the global-VP model. In contrast, the online model au-
tomatically rules the interaction between both layers, so no tuning needs to be
made.

As a summary, table 4.2 shows the performance of each learning strategy
on the development and the test sets. Parameters have been optimized in the
development set. The performance is significantly lower on the test set, which,
rather than overfitting of parameter tuning, should be attributed to more diffi-
culty on that portion of the data —a similar drop is exhibited by most systems
running on this data [Tjong Kim Sang and Déjean, 2001]. It is interesting to
see that the better performance of FR-Perceptron comes from the substantially
higher recall figures. This fact relates to the behavior of the filtering layer,
which will be explored in detail in the next subsections.

As a complementary information, Figure 4.5 shows the size of each learned
function in terms of the number of different vectors which compose its dual
form.

4.3.3 A Closer Look at the Filtering Behavior

To get an idea of how the learning strategy of FR-Perceptron works, it is inter-
esting to look at the evolution of the performance of the start-end filtering layer.
Figure 4.6 plots the precision/recall curves of the start-end decisions, for each
learning strategy considered. On both decisions, the FR-Perceptron starts with
high levels of recall and low levels of precision and, along the learning epochs,
substantially improves the precision with minor decreases in recall. In contrast,
the classification models depart from a high precision and low recall values, and

98 A Filtering-Ranking Learning Architecture

 0

 5000

 10000

 15000

 20000

 0 5 10 15 20 25

N
um

be
r

of
 d

iff
er

en
t S

ta
rt

 v
ec

to
rs

Number of Epochs

FR-Perceptron
global-VP
local-SVM

 0

 5000

 10000

 15000

 20000

 0 5 10 15 20 25

N
um

be
r

of
 d

iff
er

en
t E

nd
 v

ec
to

rs

Number of Epochs

FR-Perceptron
global-VP
local-SVM

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 5 10 15 20 25

N
um

be
r

of
 d

iff
er

en
t S

co
re

 v
ec

to
rs

Number of Epochs

FR-Perceptron
global-VP
local-SVM

Figure 4.5: Size of the dual form, in terms of the number of different vectors,
of the Clause Identification learning functions, with respect to the number of
learning epochs. At a certain point of the training process, a kernel-based
prediction involves a kernel operation with each vector that composes the dual
form of the linear separator.

4.3 Experiments on Partial Parsing 99

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 5 10 15 20 25

P
re

ci
si

on
 o

n
S

ta
rt

 W
or

ds

Number of Epochs

FR-Perceptron
global-VP
local-SVM

 88

 89

 90

 91

 92

 93

 94

 95

 96

 97

 0 5 10 15 20 25

R
ec

al
l o

n
S

ta
rt

 W
or

ds

Number of Epochs

FR-Perceptron
global-VP
local-SVM

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25

P
re

ci
si

on
 o

n
E

nd
 W

or
ds

Number of Epochs

FR-Perceptron
global-VP
local-SVM

 86

 88

 90

 92

 94

 96

 0 5 10 15 20 25

R
ec

al
l o

n
E

nd
 W

or
ds

Number of Epochs

FR-Perceptron
global-VP
local-SVM

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 5 10 15 20 25

P
 -

 n
um

be
r

of
 p

hr
as

e
ca

nd
id

at
es

Number of Epochs

FR-Perceptron
global-VP
local-SVM

 88

 89

 90

 91

 92

 93

 94

 95

 96

 97

 0 5 10 15 20 25

gl
ob

al
 F

 u
pp

er
 b

ou
nd

Number of Epochs

FR-Perceptron
global-VP
local-SVM

Figure 4.6: Start-End behavior, for the three learning strategies, on the Clause
Identification development set. The first two rows show precision/recall curves
on the identification of Start and End words, respectively. The third row shows
the behavior of the start-end filtering layer from a global point of view: The
left-hand side plots the size of the set of candidate phrases (inversely related to
start/end precision); The right-hand side plots the maximum achievable global
F1 measure, assuming perfect score functions (related to start/end recall).

100 A Filtering-Ranking Learning Architecture

throughout the learning process increase the recall while maintaining the preci-
sion. As it has been argued, the optimal start-end functions should behave as
filters which do not block any phrase of the solution. Thus, they should main-
tain very high recall values on phrase boundary words, and try to maximize the
precision. The plots evince that this behavior is automatically obtained via the
global recognition feedback.

The penalty on the global F1 measure caused by errors in the start-end
layer is also shown in Figure 4.6 (bottom row, right plot). The curve shows,
for each epoch, the maximum achievable global F1 measure given the phrases
proposed by the start-end layer, that is, it is assumed a perfect score function
given the learned start-end functions. Additionally, the filtering precision of the
Start-End layer is also shown in Figure 4.6 (bottom row, left plot), in terms of
the number of phrase candidates it produces. For the latter measure, the total
number of possible phrase candidates in the development set is 300,511. The
FR-Perceptron exhibits the expected behavior for a filter: while it maintains a
high recall on identifying correct phrases (above 95%), it substantially reduces
the number of phrase candidates throughout the learning process, and, thus,
the search space for the scoring layer. As a consequence, the input space of the
score functions is progressively simplified. Also, since the number of explored
phrase instances is reduced at each epoch, the recognition process becomes
more efficient. Unfortunately, the size of each function in terms of the number
of vectors combined also grows (recall Figure 4.5) and, in practice, the overall
model is each time slower.

Far from the behavior of the FR-Perceptron, the models trained via classifi-
cation feedback do not adapt the filter behavior to maximize the global perfor-
mance and, although they aggressively reduce the search space, provide only a
moderate upper bound on the global F1.

4.3.4 A Closer Look at the Behavior of the Score Function

A complementary question of the filtering-ranking architecture concerns the
learnability of the score function. In this experiment we trained score functions
in special settings of the filtering layer.

In the first setting, we assumed a perfect classification of starting and ending
words. In this situation, we trained a score function via recognition feedback,
and another via classification feedback, visiting in both cases the training sen-
tences online. The top plot of Figure 4.7 shows the learning curves on the
development set. The plot also presents the performance of the local-SVM
scorer on the top of perfect filters, which has been trained on the same space.
The three approaches obtain a similar performance when they are stable, be-
ing the recognition-based scorer slightly better. It is also noticeable that the
recognition feedback achieves high performance levels much faster than the clas-
sification feedback. In all cases, the performance is very high (F1 over 97.5),
indicating that the score function can be effectively learned and that the filtering
component is the real bottleneck of the system.

4.3 Experiments on Partial Parsing 101

 96.9

 97

 97.1

 97.2

 97.3

 97.4

 97.5

 97.6

 97.7

 97.8

 97.9

 0 5 10 15 20 25

gl
ob

al
 F

 M
ea

su
re

Number of Epochs

goldSE FR-Perceptron
goldSE global-VP
goldSE local-SVM

 82.5

 83

 83.5

 84

 84.5

 85

 85.5

 86

 86.5

 87

 87.5

 88

 0 2 4 6 8 10 12 14

gl
ob

al
 F

 M
ea

su
re

Number of Epochs

no filter FR-Perceptron
FR-Perceptron

 83.8

 84

 84.2

 84.4

 84.6

 84.8

 85

 85.2

 85.4

 85.6

 0 5 10 15 20 25

gl
ob

al
 F

 M
ea

su
re

Number of Epochs

FR-Perceptron
global-VP
local-SVM

Figure 4.7: Performance on the Clause Identification development set for special
settings of the filters. Top plot: using perfect start-end filters, showing the
performance obtained by training the score function as a classifier or as a ranker
(classification vs. recognition feedback). Middle plot: effect of using a start-
end filter or not. Bottom plot: using the learned start-end filters of the FR-
Perceptron, and learning new score functions from scratch.

102 A Filtering-Ranking Learning Architecture

In the second setting, we considered a model with no filtering layer. There-
fore, it explored all possible phrases in a sentence (except those breaking chunks).
This fact makes the model computationally very expensive, since at each train-
ing epoch it has to visit 1,377,843 phrase candidates. In contrast, the filtering
component in the regular model produces a filtered set ranging from 140,000
instances at the first epoch to 65,000 instances when stable (see also bottom
left plot of Figure 4.6 for the reduction in the development set). The middle
plot of Figure 4.7 shows the performance of this model, together with that of
the regular FR-Perceptron. The results in terms of global F1 measure are very
competitive, outperforming the results of the classification-based models of the
previous experiment. This fact indicates that the score function can be straight-
forwardly learned, at the cost of working in a computationally very expensive
search space. However, the combination of filtering functions with the ranker
still provides the best results, and makes the overall model computationally
feasible.

Finally, we considered the start-end filters learned with the FR-Perceptron
in the experiment described in the previous section. These filters define phrase
candidates both in the training data and the test data. With the training
candidates, we trained score functions from scratch, using the three running
learning settings:

1. Online via recognition feedback, corresponding to the FR-Perceptron with
fixed start-end functions.

2. Online with VP, giving binary classification feedback to each prediction.
Note that in this setting, where start-end functions are fixed, the only
advantage of training a classification model in the online setting is that
the actual predictions can be used to give values to features, which turns
out to provide better results.

3. Batch, with the SVM binary classification algorithm.

The bottom plot of Figure 4.7 depicts the learning curves for these models.
The online models reach similar performances in this case: the classification-
based model is faster at learning in terms of epochs, but the recognition-based
model end with slightly better figures. The SVM batch model behaves slightly
worse. Note also that the FR-Perceptron achieves a performance more than 2
points lower than in the regular model which trains both components together.
This result suggests that capturing interactions between the two layers while
learning leads to a better generalization performance.

4.4 Conclusion of this Chapter

We have presented a global learning algorithm, FR-Perceptron, for the general
problem of recognizing structures of phrases, in which, typically, several different
learning functions are required to recognize the structure. The FR-Perceptron
algorithm works online getting feedback from a global point of view, and trains

4.4 Conclusion of this Chapter 103

all the functions together, so that interactions between functions when perform-
ing the task can be captured in the learning process. In particular, our algorithm
learns two layers of decision functions: a filtering layer, which reduces the solu-
tion space to a set of plausible candidates, and a ranking layer, which explores
the candidates to select the optimal ones.

By conducting extensive experimental evaluation on clause identification, we
conclude that the global online learning via recognition feedback outperforms
alternative training strategies based on traditional binary classification feedback.
To explain this fact, we have shown in detail how the behavior of the filtering
and the ranking layers during training is effectively adapted by the algorithm
so as to benefit the global performance F1 measure.

104 A Filtering-Ranking Learning Architecture

Chapter 5

A Pipeline of Systems for
Syntactic-Semantic Parsing

In this chapter we develop three Natural Language analyzers that resolve phrase
recognition tasks, and that can be run in a pipeline. Namely, we describe
systems for the tasks known as Syntactic Chunking, Clause Identification, and
Semantic Role Labeling.

In all cases, we make use of the filtering-ranking learning architecture pre-
sented in Chapter 4. While all tasks can be casted as phrase recognition prob-
lems, they present different characteristics. We show that the filtering-ranking
architecture can be particularized for the following tasks of increasing levels of
difficulty:

• Noun Phrase Chunking, with a single type of phrases to recognize (i.e,
noun phrases) that form a sequential phrase structure in a sentence.

• Syntactic Chunking, a sequential task generalizing Noun Phrase Chunk-
ing, with eleven different types of chunks.

• Clause Identification, with a single type of phrases (i.e., clauses) that form
a hierarchical phrase structure in a sentence.

• Semantic Role Labeling, with 20 different types of semantic roles. Our ap-
proach looks for a hierarchy of arguments in a sentence. In this structure,
each argument is linked to one or many verbs, and this argument-verb
relation is labeled with the appropriate semantic role.

We develop such applications under the settings proposed in the CoNLL
Shared Task series of the 2000, 2001 and 2004 editions. In doing so, we are
able to contrast the results obtained with our learning architecture with those
of other systems that use different learning algorithms and strategies. As we
will see, our analyzers obtain accuracies that are among the top results of the
state-of-the-art systems evaluated on CoNLL data.

106 A Pipeline of Systems for Syntactic-Semantic Parsing

Apart from the analyzers presented here, systems for the task of Named
Entity Extraction have also been developed, as part of the work related to this
thesis. This particular task was addressed in two editions of the shared task,
namely in 2002 for Spanish and Dutch [Tjong Kim Sang, 2002a], and in 2003 for
English and German [Tjong Kim Sang and De Meulder, 2003]. For conciseness
we do not present the results here, but they can be consulted in the CoNLL
Shared Task papers. In Carreras et al. [2003b], a Filtering-Ranking architecture
was presented for the CoNLL-2003 task. In Carreras et al. [2002a, 2003a], named
entity extractors based on BIO tagging were developed for CoNLL-2002 and
CoNLL-2003 tasks, with AdaBoost as the learning algorithm.

The rest of the chapter is organized as follows. Next section reviews the
goals of the tasks we work with, and provides details of the data sets. Section
5.2 presents some generalities of the analyzers in this chapter. Then, section 5.3,
5.4 and 5.5 present, respectively, the systems for Syntactic Chunking, Clause
Identification and Semantic Role Labeling, together with their results contrasted
with other CoNLL Shared Task systems.

5.1 A Pipeline of Analyzers

The Conference on Natural Language Learning (CoNLL), through the organi-
zation of shared tasks, provides benchmarks on Natural Language problems in
which many learning-based systems can be compared. 1 The 2000, 2001 and
2004 editions dealt respectively with the tasks of Syntactic Chunking [Tjong
Kim Sang and Buchholz, 2000], Clause Identification [Tjong Kim Sang and
Déjean, 2001] and Semantic Role Labeling2 [Carreras and Màrquez, 2004], and
in this chapter we follow the corresponding settings.

Basically, to define a benchmark setting that allows to compare systems,
a task defines a common evaluation method and common data. Systems are
evaluated using precision, recall, and F1 on the test data (such measures are
described in Section 1.1.3). As for data, the three tasks build on sentences from
the WSJ part of the Penn TreeBank [Marcus et al., 1993]. Chunks and clauses
were extracted from that corpus, while the annotations about semantic roles
were extracted from PropBank [Palmer et al., 2005]. Table 5.1 summarizes the
WSJ sections used as training, development and test data, as well as the number
of sentences and tokens in each set, and other counts that are specific to each
task. It has to be noted that for the chunking task of CoNLL-2000 the test set
corresponded to section 20, identified in the table as the development set. In
that edition, there was no official development set. Whenever we refer in this
chapter to test results for chunking, we will be referring to the official test set,
that is, WSJ Section 20.

1The websites of the CoNLL Shared Tasks can be accessed through the CoNLL general
website, at http://www.cnts.ua.ac.be/conll .

2In 2005, the Shared Task dealt also with Semantic Role Labeling [Carreras and Màrquez,
2005]. The system presented here, however, follows the 2004 setting, which is not directly
comparable.

5.1 A Pipeline of Analyzers 107

A particular aspect of the tasks we work with is that they can be pipelined:
each one receives as input the output of the previous tasks, and adds a new layer
of analysis. In a language processor, the pipeline would start with a tokenizer
that segments running text into sentences, and sentences into tokens. Then, a
PoS tagger would assign to each token the most appropriate PoS tag. After that,
the three presented analyzers would proceed: first the chunker, then the clause
recognizer, and finally the semantic role labeler. Figure 5.1 shows an example
of a sentence analysis divided into columns, each related to an analyzer of the
pipeline. Following, we provide more details about the three tasks:

Syntactic Chunking The Syntactic Chunking problem consists of recogniz-
ing the set of chunks of a sentence, that is, non-overlapping base syntactic
constituents that form a sequential phrase structure. To do so, the available
input information consists of the words of the sentence together with their part-
of-speech tags (PoS). In CoNLL-2000, eleven different types of chunks were
considered. The three most common chunks in data are noun phrases (NP),
verb phrases (VP) and prepositional phrases (PP). In the literature related to
shallow parsing, it is also common to address a simple version of the problem,
that considers only noun phases. This particular problem was the focus of the
first Shared Task in CoNLL-1999, and there are many systems in the literature
that experiment with it. In turn, the 1999 edition was based on the work by
Ramshaw and Marcus [1995], that experimented with noun phrase chunking
and verb phrase chunking separately.

Clause Identification The Clause Identification problem consists of recog-
nizing the set of clauses on the basis of words, part-of-speech tags, and chunks
–the latter being recognized in the previous task. In the CoNLL-2001 setting
the problem was simplified by removing the clause–type labels. As a conse-
quence, there is only one category of phrases to be considered. However, the
clause structure of a sentence is hierarchical. This fact makes the problem more
complex than the previous task, because recursiveness of clauses has to be taken
into account.

Semantic Role Labeling Semantic Role Labeling is the problem of recog-
nizing the arguments of the propositions of a sentence, and label them with
semantic roles. In general, a sentence may contain a number of propositions,
each formed by a predicate and a set of arguments. Arguments in a proposition
do not overlap. Given a predicate, thus, the corresponding set of arguments is
a sequential phrase structure, and the task can be thought as a chunking task.
The CoNLL-2004 Shared Task addressed this problem considering the Prop-
Bank corpus, that defines 20 different types of semantic roles. In PropBank,
such roles can be differentiated into numbered arguments (7 types) –whose se-
mantics depend on the verb and the verb usage in a sentence– and adjuncts (13
types) –that express temporal, locative, cause, and other semantic aspects. The
goal was to recognize labeled roles of verbal predicates on the basis of partial

108 A Pipeline of Systems for Syntactic-Semantic Parsing

|K| Training Development Test
sect. 15–18 sect. 20 sect. 21

Sentences 8,936 2,012 1,671
Tokens 211,727 47,377 40,039

Syntactic Chunking 11
Chunks (all types) 106,978 23,852 20,159
NP 55,081 12,422 10,341
VP 21,467 4,658 4,186
PP 21,281 4,811 3,814

Clause Identification 1
Clauses 24,841 5,418 4,856

Semantic Role Labeling 20
Propositions 19,098 4,305 3,627
Distinct Verbs 1,838 978 855
Arguments (all types) 50,182 11,121 9,598
A0 12,709 2,875 2,579
A1 18,046 4,064 3,429
A2 4,223 954 714
ADV 1,727 352 307
DIS 1,077 204 213
LOC 1,279 230 228
MNR 1,337 334 255
MOD 1,753 389 337
TMP 3,567 759 747

Table 5.1: Information on the training, development and test data sets, common
to the three tasks. Below the label of each set, in the second line of the table,
the WSJ sections that form the set are indicated (in CoNLL-2000, the chunking
systems were actually tested in the set noted here as development, since there
was no official set for validating systems). For each data set, the table shows
counts of the number of sentences and tokens, as well as counts specific to each
task. The second column (|K|) specifies the number of phrase types considered
in each task. Then, the total number of phrases (chunks, clauses or arguments)
is shown, together with counts of the most frequent types in the data. For
Semantic Role Labeling, the table also gives the number of propositions in the
data (i.e., chunkings, each related to one predicate), and how many distinct
verbs appear in such propositions.

5.1 A Pipeline of Analyzers 109

Ship NN B-NP (S* - (A1* (A0* (A0* *

lines NNS I-NP * - *) * * *

operating VBG B-VP * operate (V*) * * *

in IN B-PP * - (LOC* * * *

the DT B-NP * - * * * *

Pacific NNP I-NP * - *) *) *) *

plan VBP B-VP * plan * (V*) * *

to TO B-VP (S* - * (A1* * *

raise VB I-VP * raise * * (V*) *

rates NNS B-NP * - * * (A1* *

on IN B-PP * - * * * *

containers NNS B-NP * - * * * (A0*)

carrying VBG B-VP (S* carry * * * (V*)

U.S. NNP B-NP * - * * * (A1*

exports NNS I-NP * - * * * *)

to TO B-PP * - * * * (DIR*

Asia NNP B-NP *) - * * *) *)

about RB B-NP * - * * (A2* *

10 CD I-NP * - * * * *

% NN I-NP *) - * *) *) *

. . O *) - * * * *

Figure 5.1: An example sentence, annotated in columns. The first and second
columns annotate words and PoS tags, respectively. Syntactic chunks are found
in the third column, in BIO notation. The fourth column annotates the syntac-
tic clauses, which appear in Start-End notation. The remaining columns (from
5th to 9th) annotate propositional arguments labeled with semantic roles: the
5th column marks the position of verbal predicates of the sentence, which ap-
pear in infinitive form; column 6th corresponds to the arguments of “operate”
(according to the definition of roles in PropBank, A1 stands for the operator,
while LOC denotes a locative adjunct); column 7th annotates the arguments of
“plan” (A0 is the planner, while A1 is the thing planned); column 8th is for
“raise” (A0 is the agent, A1 is the thing rising, A2 is the amount risen); finally,
column 9th marks the arguments of “carry” (with A0 as the carrier, A1 as the
thing carried, and DIR as an adjunct denoting direction).

110 A Pipeline of Systems for Syntactic-Semantic Parsing

syntactic information, namely chunks and clauses —that in turn are recognized
by the two previous analyzers. In practice, the verbal predicates for which to
recognize the arguments were marked in the input sentence, although, broadly,
these correspond to the words with a verbal PoS tag. The output of a system
for a sentence is set of argument chunkings, one for each target verb.

5.2 General Details about the Systems

Before describing the particular systems of this chapter, we comment on two
aspects that are general to all systems. The first concerns the representation
of learning instances with features. The second is about the use of the Voted
Perceptron algorithm, an extension of the original Perceptron to achieve more
robust predictions.

5.2.1 On Representation and Feature Extraction

In this section we describe the type of representation of learning instances that
is adopted in the phrase recognition models presented in this thesis. Such rep-
resentations are not novel, but fairly standard in literature.

To remind the reader, the general form of the learning functions we use is
h : X → IR, where X is some instance space, and the output of h is a real-valued
prediction. The h function is implemented with a weight vector w ∈ IRn, and
a representation function φ : X → IRn. Given an instance x ∈ X , φ(x) outputs
an n-dimensional vector of features that represents the instance. The w vector,
also with n dimensions, has one weight for each feature. Then, a prediction
is computed as the scalar product between the weight and feature vectors, i.e.
h(x) = 〈w, φ(x)〉. In this section, we concentrate on how the φ function works.

Our particular architectures involve two types of representation functions:
one for words (φw) and the other for phrase candidates (φp). In both cases,
the representation function not only takes the target instance (a word or a
phrase), but also the context in which such instance appears. Hence, a repre-
sentation function takes a sentence, a target word or phrase and, possibly, a
partial solution (recall that our recognition strategy is incremental), and out-
puts a feature vector that describes the information that, supposedly, is relevant
for the phenomenon being predicted. In our case, the features we consider are
binary-valued, and indicate whether a certain property holds in the instance or
not. In the literature, such features are often called indicator features.

Window Representation. A very common technique to represent a word in
the context of a sentence is that of a window of words. Assume a sentence of
n words, in which we are willing to make a prediction on the i-th word (e.g.,
whether word xi starts an NP chunk). To support the prediction, the sentence
is annotated, fully or partially, with linguistic tags and elements that have been
predicted in previous processes (e.g., PoS tags), or in previous steps of the cur-
rent one (e.g., “starts” of chunks in previous words). A window representation

5.2 General Details about the Systems 111

↓
-3 -2 -1 0 +1 +2 +3

form > . . . operating in the Pacific plan to raise . . .
PoS > VBG IN DT NNP VBP TO VB

Starts > S-VP S-PP S-NP ? ? ? ?

Ends > E-VP E-PP -- ? ? ? ?

Word features: word:-2:in, word:-1:the, word:0:Pacific,
word:1:plan, word:2:to

PoS features: pos:-2:IN, pos:-1:DT, pos:0:NNP,
pos:1:VBP, pos:2:TO

PoS bigrams: posb:-2:-1:IN DT, posb:-1:0:DT NNP,
posb:0:1:NNP VBP, posb:1:2:VBP TO

Starts+PoS: s+p:-2:-1:PP DT, s+p:-1:0:NP DT, etc.

Figure 5.2: An example of feature extraction with a window of half-size 2, in
the context of predicting start-end boundaries of chunks. The top of the figure
shows a piece of running text, with the target word under consideration marked
with an arrow. The available annotations are the word forms of the sentence
and their PoS tags, as well as the values being predicted in the current process
(assuming left-to-right exploration), that indicate whether the words to the
left of the target word start/end syntactic chunks (actually, these dimensions
would be multi-valued, i.e. a particular word can be predicted as start/end of
many chunk types at the same time). The line above the words indicates the
position of each word, relative to the central word. The bottom part of the
figure gives examples of extracted features, for four extraction patterns. The
first two extract the forms and PoS tags of the words in the window. The third
pattern extracts every pair of contiguous PoS tags in the window (bigram). The
Starts+PoS pattern combines “start” indicator values of a word with the PoS
tag of the next word. Note that all features appear with relative positions.

extracts the annotations from a target word and their neighboring words. For-
mally, a window of half-size s anchored in a word xi extracts annotations of
the words [xi−s, . . . , xi+s]. The particular extraction of annotations is made
following a number of predefined extraction patterns (e.g., extract the PoS tag
of a word). Each pattern is evaluated at different positions in the window. An
extraction pattern (denoted by some label), together with a position relative to
the central word and the value of the pattern in that position forms a final indi-
cator feature of the system. For example, a typical feature of the system might
be “the PoS tag of the word at position -1 is DT”. Figure 5.2 shows an example
of a window-based feature extraction, in the context of syntactic chunking.

112 A Pipeline of Systems for Syntactic-Semantic Parsing

Representations for Phrase Candidates. The main difficulty at repre-
senting phrase candidates is that the length of a phrase is of arbitrary size. If
phrases are long, a pattern that represents the sequence of elements forming the
phrase will not generalize well, because it will appear very sparsely in data. A
solution to this problem is to break down the phrase candidate into many pieces
of fixed size. This corresponds to extracting n-grams of the candidate. Another
possibility is to look for specific, task-dependent elements within the candidate,
and discard the rest. We use both approaches in the systems that follow. Fi-
nally, it is also common to represent the context of the phrase candidate by
extracting windows of features at the start and end positions.

Throughout this chapter, we describe particular feature extraction functions
for the problems that are addressed. As it will be shown, some extraction
patterns are task dependent, and have been designed with the advice of experts
in linguistics. However, most of the extraction patterns basically codify the
annotations that are present in the input part of the task, in a quite exhaustive
way.

Two Notes on Feature Extraction. Our representation functions do ex-
tract features from values that are predicted in visited parts of the exploration.
When training the functions, the online learning paradigm offers two possibili-
ties to give value to these features: (1) consider the “gold” values that come in
the training data (this is the variant used with batch learning algorithms); or (2)
use the actual predictions made during training. In preliminary experimenta-
tion, we found slightly better results when working with features extracted from
the predicted structure. The second note is about feature reduction. The type
of extraction patterns we consider generate hundreds of thousands of binary
indicator features (to explain these numbers, consider extraction patterns that
generate one feature for each word of the English language, or even for combi-
nations of a few words). In this scenario, it is very common to apply a simple
feature filtering, related to the frequency of a particular feature in training data.
In our online learning process, we did not consider features that appeared less
than three times during the first training epoch. This simple frequency thresh-
old reduces a high percentage of possible features, while it has no significant
influence on the performance.

Polynomial Kernels. All results presented in the experimentation were ob-
tained using polynomial kernels of degree two (see Section 3.4.2 for the kernel-
based version of Perceptron). Initial tests in the context of Clause Identification
revealed a very poor performance for the linear case and no significant improve-
ments for degrees greater than two. The development of specific kernels for
exploiting the type of phrase structures we address, such as those in [Collins
and Duffy, 2002], is a question that deserves further attention.

5.3 Syntactic Chunking 113

5.2.2 Voted Perceptron (VP)

We incorporate in the architecture the results of Freund and Schapire [1999]
on Voted Perceptron (see Section 3.4.2 for a detailed description). It consists
of storing all versions of a prediction vector that are generated during training,
each accompanied with a weight related to the number of correct positive pre-
dictions it makes while it survives until a mistake is produced. 3 This collection
of weighted prediction vectors –that ends with the regular Perceptron vector–
serves to make robust, weighted predictions when testing. The authors propose
two voting methods, namely voted –weighting the signs of the predictions (i.e.,
+1 or −1)– and averaged –weighting directly the prediction scores.

Throughout the experimentation in this chapter, we compare the test per-
formance of the two voting prediction methods and that of the standard Per-
ceptron. We show that, in general, averaged predictions provide slightly better
results than voted predictions. Also, we show that the voting methods converge
much faster to stable results than the standard prediction method.

5.3 Syntactic Chunking

In this section we describe a syntactic chunking system, developed in the setting
of the CoNLL-2000 Shared Task [Tjong Kim Sang and Buchholz, 2000]. We
make use of a filtering-ranking architecture. To our knowledge, all learning-
based systems found in the literature rely on learners at word-level that assign
tags to words (see, e.g., Muñoz et al. [1999] or Kudo and Matsumoto [2001]).
In our case, we make use of learners that work at chunk level.

We first summarize the chunking strategy. Then, we describe the features
of the system. After that, we show the results of our system on test data,
and we contrast them with those of the top-performing systems that have been
developed within the CoNLL-2000 Shared Task setting.

5.3.1 Strategy

Syntactic chunking can be straightforwardly approached with the filtering-ranking
architecture described in Chapter 4. Here are the main details of the architec-
ture:

• For each type of chunk, there are three linear separators, namely the start-
end and the score: the first two identify chunk candidates, and the latter
predicts a plausibility score for each chunk candidate. In the particular
setting of CoNLL-2000, with 11 types, the architecture is formed by 33
separators. We will also show results for the specific task of NP chunking,
in which the chunker concentrates exclusively on Noun Phrases, and, thus,
is formed by three linear separators.

3Differing from the original work, we do not consider counts of correct negative predic-
tions for setting the weights, since in recognition-based problems negative predictions are the
default, most common values.

114 A Pipeline of Systems for Syntactic-Semantic Parsing

• The phrase structures to be recognized are of sequential nature. In other
words, chunks do not overlap, and do not admit embedding. This require-
ment translates into constraints that the inference process will take into
account when building the chunk structure for a sentence. The partic-
ular type of inference is similar to the Viterbi algorithm, and has been
described in Section 3.3.2: it explores the sentence from left to right, and
at each word it computes the optimal structure, in terms of chunk scores,
from the beginning of the sentence to that word.

5.3.2 Features

Essentially, our system reproduces similar feature spaces than other relevant
works for these tasks, which reported state-of-the-art results [Muñoz et al., 1999;
Kudo and Matsumoto, 2001; Collins, 2002; Sha and Pereira, 2003]. The main
difference is that such systems work only at word level, while our system operates
also at phrase level. In the latter level, we develop features for representing a
chunk candidate.

Representation of Words

The start-end functions of the chunker work with a window-based representation
of words. The window is of half-size 2, that is, it considers 5 words including
the central word. For a window centered at the i-th word, the following feature
extraction patterns are applied to [xj]i+2

j=i−2:

• Word forms and PoS tags.

• PoS-Grams, on all possible sequences within the window that include
the central word xi.

• Left Start/End Flags. For each type of chunk k and each word xj to
the left of xi, two features indicating whether xj has been predicted as a
start/end of a chunk of type k.

Representation of Chunk Candidates

The score functions of the chunker represent a chunk candidate (s, e) with the
following features:

• A window at xs, that extracts the patterns defined above for the words
[xs−2, xs−1, xs].

• A window at xe, that extracts the patterns defined above for the words
[xe, xe+1, xe+2].

• Bag of words and bag of PoS of the words from s to e.

• PoS-Grams on all subsequences of [xs, . . . , xe] of up to size 3, and also
the complete PoS-Gram on the whole sequence.

5.3 Syntactic Chunking 115

 91

 92

 93

 94

 95

 96

 97

 98

 99

 100

 0 5 10 15 20 25 30

gl
ob

al
 F

 M
ea

su
re

Number of Epochs

Last
 88

 89

 90

 91

 92

 93

 94

 0 5 10 15 20 25 30

gl
ob

al
 F

 M
ea

su
re

Number of Epochs

Last
Voted

Averaged

Figure 5.3: Learning curve on Syntactic Chunking for the eleven type FRP-
Chunker. Left plot: training set in last prediction mode. Right plot: validation
data (WSJ Section 21) in last, averaged and voted modes.

5.3.3 Results

We trained a model, named FRP-Chunker, for the 11 types of chunks in the data,
with tree functions per chunk type. In CoNLL-2000, there was no official set for
validating systems, and systems were tested in what we call the development
set (corresponding to WSJ Section 20 —see Table 5.1). In our work, as well and
in many others, we used the test set (WSJ Section 21) to tune the parameters
of the system. Figure 5.3 plots the evolution of performance of FRP-Chunker
in terms of global F1 measure, on the training (left plot) and test (right plot)
sets. As it can be seen, at epoch 15 the traning performance is almost at 100%,
indicating that the data is separable under the chosen representation. Looking
at the results on the validation data, the best result is obtained by the averaged
prediction method after 8 learning epochs, with an F1 measure at 93.3. Both
averaged and last prediction methods perform fairly similar, although the former
achieves much faster a better performance. In this problem, the voted method
degrades the overall performance.

Training Single-Type FRP-Chunkers

Apart from training a multi-type chunker for 11 chunk categories, we were
also interested in training 11 single-type chunkers, one for each chunk type.
The motivation is two-fold. First, we were intested in experimenting whether
training globally a multi-category chunker is advantageous over training several
single-category chunkers and then combining them. Second, training a specific
chunker for noun phrases allows us to compare with systems that have been
recently developed for this particular task.

We trained each chunker for 10 epochs looking only at training annotations
of the corresponding chunk type, and selected its best performing epoch on the
validation data. Then, for recognizing chunks on test data, we put together the
eleven single-category chunkers to form a single multi-category chunker.

116 A Pipeline of Systems for Syntactic-Semantic Parsing

Multi-Type Single-Type Single-Type Comb.
Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

overall 94.20 93.38 93.79 - - - 94.58 92.83 93.69
ADJP 83.80 68.49 75.38 83.38 68.72 75.74 86.76 67.35 75.84
ADVP 85.29 79.68 82.39 83.94 77.25 80.46 85.70 77.48 81.38
CONJP 50.00 44.44 47.06 50.00 44.44 47.06 50.00 44.44 47.06
INTJ 100.00 100.00 100.00 00.00 00.00 00.00 00.00 00.00 00.00
LST 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
NP 94.55 94.37 94.46 94.69 93.98 94.33 94.70 93.80 94.25
PP 96.50 98.13 97.31 96.92 97.36 97.14 97.33 97.17 97.25
PRT 78.82 63.21 70.16 75.24 74.53 74.88 82.76 67.92 74.61
SBAR 90.81 79.44 84.75 86.77 83.36 85.03 90.06 81.31 85.46
VP 93.90 93.22 93.56 93.50 93.19 93.34 94.22 93.11 93.66

Table 5.2: Performance in Chunking per phrase types, on the CoNLL-2000 test
data (WSJ Section 20). The first triple of columns (Multi-Type) corresponds
to the eleven type FRP-Chunker, working with 8 epochs. The second triple of
columns presents the results obtained by individual, single-type FRP-Chunkers,
each on their specific type. The third triple of columns corresponds to the
combination of the 11 single-type FRP-Chunkers.

Table 5.2 presents the results of different filtering-ranking chunkers, detailed
per chunk type. The first block (first three columns) corresponds to evaluation
results of the multi-category chunker. The second block provides the results of
each individual chunker applied separately to the test. The last block shows the
results obtained by the combined chunker. As it can be seen, with the exception
of two categories (NP and PRT) the results of the combined chunker are slightly
better than in the individual performance. Note that in both architectures the
local functions are the same, and consequently the local predictions are identical.
Thus, the improvement of the combined chunker is caused by the inference pro-
cess, that selects the most confident chunks to form a coherent, non-overlapping
chunk sequence. Compared to the trained 11-category FRP-Chunker, the model
combining independent chunkers achieves a similar performance, slightly lower
in F1 but generally better in precision.

This result seems to indicate that in this problem it is not particularly ben-
eficial to globally learn dependent recognizers for many types of phrases at the
same time. Therefore, it seems more practical to learn a separate recognizer
for each phrase category, as far as, once combined, similar results are obtained
for the multi-category setting. First, concentrating on a single category makes
the training procedure much easier, since the learning effort (in terms of the
number of epochs, complexity of the kernel, etc.) can be adapted to that cat-
egory according to the complexity of its phrases. Second, from an engineering
point of view, it is more flexible to have separate chunkers, because they can be
combined at will depending on the requirements of a particular application.

5.3 Syntactic Chunking 117

5.3.4 Comparison to Other Works

We divide this discussion in two blocks: systems developed for the general
syntactic chunking task, and systems addressing noun phrase chunking.

Syntactic Chunking. Table 5.3 provides the results of the top-performing
methods published so-far on the test set of the Chunking task. As it can be
seen, our system, named FRP-Chunker, is among the top systems for the prob-
lem, which achieve all similar performances. The methods with better results
than our system perform the task as a tagging, solved with multiclass learn-
ing techniques. Kudo and Matsumoto [2001] performed several taggings which
were later combined. Each tagging is produced with SVM classifiers performing
a pairwise multiclass prediction. They report a performance of 93.85 with an
individual tagging and 93.91 by combining many taggings in a majority voting
scheme. Their system makes use of several hundreds of SVM classifiers ap-
plied to each word, whereas we only need 22 perceptrons for filtering words and
11 perceptrons for scoring phrases. In contrast, their feature space is simpler
than ours, since in the score functions we exploit rich features on phrases. The
second best performing work on the data set is by Zhang et al. [2002], which
apply regularized Winnow. They report a base performance of 93.57, and an
improved performance of 94.17 by making use of enhanced grammatical infor-
mation (noted with +), which was unavailable to us. Up to date, the best work
is by Ando and Zhang [2005]. This system was trained with semi-supervised
learning techniques: apart from the official training data, they took advantage
of 15 million words of unlabeled data to improve the performance of a linear
model for sequential tasks. The system without using unlabeled data scores
93.60 (noted SVD, for singular value decomposition), and it improves to 94.39
with the semi-supervised technique (noted SVD-ASO, for SVD – alternating
structure optimization). The last three rows of the table correspond to the best
systems at competition time (CoNLL-2000).

Noun Phrase Chunking. Table 5.4 shows comparative results on recog-
nizing individual noun phrases (NP). Apart from the referenced systems which
apply to the complete chunking task, there have been recently many systems
specifically trained for this category. It has to be noted that in the table there
are systems working with the full set of chunk types, and others working specifi-
cally with NP phrases. Thus, training conditions are not exactly the same, since
the latter only make use of NP phrase annotations. This remark is noted in
the second column of the table. Our multi-chunker, achieving 94.46, is situated
at second position in the current ranking, whereas our specific NP-chunker, at
94.33, obtains competitive performance. As in general chunking, the best re-
sult, at 94.70, is by Ando and Zhang [2005], that takes advantage of unlabeled
data. Sha and Pereira [2003] obtained 94.38 with Conditional Random Fields.
They also report 94.09 for the Markov tagging architecture globally trained
with Perceptron of Collins [2002]. The latter work reports an F1 at 93.53 on
the NP chunking data originally defined by Ramshaw and Marcus [1995], which

118 A Pipeline of Systems for Syntactic-Semantic Parsing

is not identical to the CoNLL-2000 data but fairly comparable. On the same
data, Punyakanok and Roth [2004] report F1 at 94.15 with a conditional Markov
model which makes use of probabilistic SNoW classifiers.

Reference Technique Prec. Rec. F1

Ando and Zhang [2005] SVD-ASO 94.57 94.20 94.39
Zhang et al. [2002] Winnow (+) 94.28 94.07 94.17
Kudo and Matsumoto [2001] SVM voting 93.89 93.92 93.91
Kudo and Matsumoto [2001] SVM single 93.95 93.75 93.85
FRP-Chunker F&R VP 94.20 93.38 93.79
Ando and Zhang [2005] SVD 93.83 93.37 93.60
Zhang et al. [2002] Winnow 93.54 93.60 93.57
Kudo and Matsumoto [2000] SVM 93.45 93.51 93.48
van Halteren [2000] MBL&WPD voting 93.13 93.51 93.32
Tjong Kim Sang [2000] MBL voting 94.04 91.00 92.50

Table 5.3: Comparison on Syntactic Chunking of CoNLL-2000, with the top-
performing systems published so-far on the test data. The last three rows cor-
respond to the best systems at competition time (out of 11 systems presented
in that edition, with F1 measures ranging from 85.76 to 93.48).

Reference S Technique Prec. Rec. F1

Ando and Zhang [2005] all SVD-ASO unav. unav. 94.70
FRP-Chunker all F&R VP 94.55 94.37 94.46
Kudo and Matsumoto [2001] all SVM voting 94.47 94.32 94.39
Zhang et al. [2002] all Winnow (+) 94.39 94.37 94.38
Sha and Pereira [2003] NP CRF unav. unav. 94.38
FRP-Chunker NP F&R VP 94.69 93.98 94.33
Kudo and Matsumoto [2001] all SVM single 94.54 94.09 94.32
Sha and Pereira [2003] NP MM-VP unav. unav. 94.09
Zhang et al. [2002] all Winnow 93.80 93.99 93.89
Collins [2002] NP MM-VP unav. unav. 93.53

Table 5.4: Comparison on Noun Phrase Chunking, with the top-performing sys-
tems published so-far on the test data of CoNLL-2000. Second column indicates
the scope of the chunker, namely whether the system works specifically for that
chunk (NP), or for the full set of chunks (all).

5.4 Clause Identification 119

5.4 Clause Identification

In this section we describe a clause identification system, developed in the setting
of the CoNLL-2001 Shared Task [Tjong Kim Sang and Déjean, 2001]. The main
particularity of this partial parsing task is that clauses in a sentence exhibit
a recursive nature. Our participating system in that edition [Carreras and
Màrquez, 2001] performed much better than the other five systems presented
at competition time. It was the only system that applied learned classifiers
at all the stages involved in the recognition process —including classifiers that
deal with clause candidates. The other systems only applied learning in an
initial tagging layer, and then used heuristics to build the recursive structure.
The system discussed here makes use of FR-Perceptron to train all the learning
components of the parser at the same time, globally. It substantially improves
our previous results on the task.

Following, we summarize the main aspects of the strategy. Then, we describe
the features used by the system. After that, we show the results of the clause
parser, and compare them with other results published on the same data.

5.4.1 Strategy

The filtering-ranking strategy and the FR-Perceptron algorithm presented in
Chapter 4 have been designed to recognize phrase hierarchies in a sentence.
Hence, their application to this task is quite direct. To remind the reader, we
sketch the strategy in the following two points:

• Since there is a single type of phrases, namely clauses, the architecture
consists of three learning functions: the start-end filters, identifying pos-
sible clause candidates, and the score function, that predicts plausability
scores for clause candidates.

• The inference process looks for a hierarchy of clauses. That is, clauses in
a solution do not cross boundaries but admit embedding. It consists of a
bottom-up exploration based on dynamic programming: for every span of
words, in increasing length, it looks for the partial clause hierarchy that
is optimal in terms of clause scores. For more details about this process,
see Section 3.3.2.

As a particularity, the parser searches a clause structure that is coherent with
the sequence of chunks recognized in the previous layer. That is, clauses that
cross boundaries with some chunk in the input are not considered as possible
clause candidates. On the positive side, this ensures that the complete partial
syntax forms a coherent structure, and also avoids computation in the clausal
layer (because much less words are possible start/end boundaries). On the
negative side, chunk boundaries that are wrong can degrade more severely the
performance on the clause layer.

120 A Pipeline of Systems for Syntactic-Semantic Parsing

5.4.2 Features

This section describes the features used by the clause identification system.
Most features are the same that in Syntactic Chunking, while others are in-
corporated to describe linguistic phenomena that might be relevant to identify
clause structure. The following list of features is the same than that of our
previous work on this task [Carreras et al., 2002b], and, in turn, is based on the
features we used for the system at competition time [Carreras and Màrquez,
2001].

Representation of Words

As in Syntactic Chunking, the start-end filters work with a window representa-
tion of half-size 2. For a window centered at the i-th word, the following feature
extraction patterns are applied to [xj]i+2

j=i−2:

• Word form and PoS tag.

• Chunk tags, in BIO notation. (e.g.: “word at -1 is B-NP”)

• Left Start-End Flags: For each word xj to the left of xi, two binary
flags indicating whether xj has been predicted as start and/or end words
of a clause.

• Counts: Flags indicating whether a particular linguistic element appears
0, 1, 2 or more times within a sentence fragment. We consider two frag-
ments, with separate features for each: from the beginning of the sentence
to xi, and from xi to the end. The following elements are considered
(separate counting flags for each):

– Relative pronouns (e.g., “that”)
– Punctuation marks (. , ; :)
– Quotes
– Verb phrase chunks
– Relative phrase chunks

Representation of Clause Candidates

The score function represents a clause candidate (s, e) as follows:

• A window at xs and a window at xe.

• Top-most structure: A pattern representing the relevant elements of
the top-most structure forming the candidate, from s to e. In particular,
the following elements are extracted to form the pattern:

– Punctuation marks
– Coordinate conjunctions (e.g., “or”, “and”)
– The word “that”
– Relative pronouns (e.g., “that”, “which”, “who”, etc.)
– Verb phrase chunks

5.4 Clause Identification 121

 80

 82

 84

 86

 88

 90

 92

 94

 96

 0 5 10 15 20 25 30 35 40 45 50

gl
ob

al
 F

 M
ea

su
re

Number of Epochs

Last
 81

 82

 83

 84

 85

 86

 87

 88

 89

 0 5 10 15 20 25 30 35 40 45 50

gl
ob

al
 F

 M
ea

su
re

Number of Epochs

Last
Voted

Averaged

Figure 5.4: Learning curve on Clause Identification. Left plot: training set in
last prediction mode. Right plot: development set in last, averaged and voted
modes.

– The top clauses within the [xs, . . . , xe] fragment. These elements are
found in the solution y that being incremented in the current span.

Note that the pattern only considers top-most structure. Thus, if a clause
(or chunk) appears in the pattern, the elements within it are not con-
sidered. For example, in Figure 5.1, the pattern for the clause “((to
raise)VP rates on containers (carrying U.S. exports to Asia)S about 10%)”
is VP_%_S_%.

• Counts in the [xs, . . . , xe] fragment, considering the elements counted in
the representation of words, as well as the number of clauses found inside
the candidate.

5.4.3 Results

We trained the clause identification model for up to 50 epochs on the train-
ing data. Figure 5.4 shows the performance of the model (F1 measure) on the
training data (left plot) and on the development data (right plot). Clearly, the
learning curve on the training set shows that the learning strategy effectively
optimizes the global F1 measure on the task through the learning epochs. How-
ever, the performance gets stable around 96, indicating that the training set is
not separable under the current choice of features and kernel. Looking at the
performance on the development set, the model shows a good generalization
curve, with the best results over 88% and with no significant overfitting. Al-
though at epoch 50 the FR-Perceptron has not converged, the generalization
performance seems to be stable from epoch 20, showing only minor decreases in
further epochs. Looking at the three prediction methods, both the averaged and
the voted methods perform substantially better than the default last method.

122 A Pipeline of Systems for Syntactic-Semantic Parsing

Reference Technique Precision Recall F1

FR-Perceptron F&R VP 88.17 82.10 85.03
Carreras et al. [2002b] AdaBoost class. 90.18 78.11 83.71
Carreras and Màrquez [2001] AdaBoost class. 84.82 78.85 81.73
Molina and Pla [2001] HMM 70.85 70.51 70.68
Tjong Kim Sang [2001] Memory-based 76.91 65.22 70.58

Table 5.5: Comparison on Clause Identification of CoNLL-2001, with the top-
performing systems published so-far on the test set. The last three rows corre-
spond to the best systems at competition time (out of 6 systems presented in
that edition, with F1 performances ranging from 52.46 to 81.73).

5.4.4 Comparison To Other Works

Table 5.5 gives results of the top-performing published methods in this problem.
FR-Perceptron clearly outperforms our previous system on the task [Carreras
et al., 2002b], which consisted of a robust combination of AdaBoost classifiers
working with the same filtering-ranking architecture. The scoring classifiers in
that system were trained taking into account the type of errors produced in the
filtering layer, as we did with the SVM models in Section 4.3.2. The online
learning strategy we propose achieves better results automatically, mainly due
to a rise in the recall rate. The other three works on the table correspond to
the best systems at competition time.

5.5 Semantic Role Labeling (SRL) 123

5.5 Semantic Role Labeling (SRL)

We describe a system for the CoNLL-2004 Shared Task on Semantic Role Label-
ing (SRL) [Carreras and Màrquez, 2004]. The goal of the task is as follows: for
a number of target verbs, that are given with each sentence, the system has to
recognize the arguments of the propositions governed by such verbs, and label
them with the appropriate semantic role. In a proposition arguments do not
overlap, and thus form a chunking. However, we observe that arguments accross
propositions never cross boundaries, that some of them coincide in boundaries,
and that all together form a hierarchy of arguments. Building on these ob-
servations, we derive a filtering-ranking architecture that jointly recognizes the
arguments of all propositions of a sentence. To our knowledge, it is the only
system in literature that proceeds in this way, that is, other systems analyze
each proposition independently.

Next, we explain the strategy for recognizing propositional arguments. Then,
we describe the features of the system. Finally, we present the results obtained
by our CoNLL-2004 system [Carreras et al., 2004], and contrast them with those
of other systems presented in the task.

5.5.1 Strategy

The strategy for recognizing propositional arguments in sentences is based on
two main observations about the argument structure in the data. Figure 5.5
illustrates the structure of chunks, clauses and arguments for a sentence.

• The first observation concerns the relation of the arguments of a proposi-
tion with the partial parse tree formed with chunks and clauses:

– A proposition places its arguments in the clause directly containing
the verb (local clause), or in one of the ancestor clauses.

– Given a clause, we refer as the top-most syntactic elements to the
words, chunks or clauses that are directly rooted at the clause. Propo-
sitional arguments are formed as subsequences of top-most elements
of a clause.

– Finally, for local clauses arguments are found strictly to the left or to
the right of the target verb, whereas for ancestor clauses arguments
are usually to the left of the verb. This observation holds for most
of the arguments in the data.

• The second observation is that the arguments of all propositions of a
sentence do not cross their boundaries, and that arguments of a particular
proposition are usually found strictly within an argument of a higher level
proposition. Thus, the problem can be thought of as finding a hierarchy
of arguments in which arguments are embedded inside others, and each
argument is related to a number of propositions of a sentence with a
particular role. If an argument is related to a certain verb, no other
argument linking to the same verb can be found within it.

124 A Pipeline of Systems for Syntactic-Semantic Parsing

Pa
ci

fic

pl
anth

ein

op
er

at
in

g

lin
es

Sh
ip to

ra
is

e
ra

te
s

on
co

nt
ai

ne
rs

ca
rr

yi
ng

U
.S

.
ex

po
rt

s to

A
si

a
ab

ou
t

10 %

.

A0

A0LOC

A1

A1
A1 A0 A1

DIR

A2

NP PP NP NP PP NP NP NPNPPP

S

VPVP VPVP

S

Figure 5.5: An example sentence, with phrase structures corresponding to
chunks, clauses, and propositional arguments labeled with semantic roles. The
small circles in the bottom line represent the words of the sentence. From these,
those in black mark the verbs of the sentence: the goal of the SRL task is to
recognize the arguments of these verbal predicates. The medium-sized circles,
with a label in within, represent the syntactic phrases of the sentence. The
NP, VP and PP are recognized in the chunking task, while the S are recognized
in the clause identification task. To simplify the graph, the main clause (that
governs the complete sentence) is not depicted. Finally, the big circles represent
the arguments of the sentence. The labeled edges connecting an argument with
a verb represent the semantic roles. Note that an argument can be related to
one or many verbs. Note also that sometimes an argument matches exactly
a syntactic phrase (e.g., “Ship lines” or “to raise rates . . . about 10%”), and
sometimes an argument is formed by many contiguous phrases (e.g., “in the
Pacific”). Finally, note that the complete phrase structure, formed by chunks,
clauses and arguments, is of hierarchical nature.

Our system for SRL translates these observations into constraints which are
enforced to hold in a solution, and guide the recognition strategy. Next, we
describe the model for SRL. Then, we sketch the strategy to find argument
hierarchies in a sentence.

SRL Model

A semantic role is the relation of an argument (s, e) with a verb v. Hence, in this
task the labels (i.e. semantic roles) are not assigned to arguments, but rather
to argument-verb pairs. Formally, a solution y ∈ Y for a sentence x is a set
of arguments of the form (s, e)k

v , where (s, e) represents an argument spanning
from word xs to word xe, playing a semantic role k ∈ K with a verb v ∈ V .

This particularity introduces a slight change in the filtering-ranking model
presented in Chapter 4: here, the score function predicts plausability scores for
a span (s, e) being argument of v with role k. The model is expressed as:

5.5 Semantic Role Labeling (SRL) 125

R(x) = arg max
y⊆F(x) | y∈Y

∑

(s,e)v

k
∈y

score(x, y, v, (s, e)k) (5.1)

The start-end filters remain the same: they classify words for being bound-
aries of arguments playing a role k, and this prediction is done independently
of verbs.

Building Argument Hierarchies

The exploration to build an argument hierarchy for a sentence is as follows:

• The sentence is explored by navigating through the clause hierarchy, in
bottom-up order: from the inner-most clauses to the root clause.

• In each clause, a number of arguments is recognized. The solution for the
sentence is the union of the arguments found in all clauses.

• In a clause spanning from word S to E, the process is as follows:

1. The sequence of top-most elements of the clause is extracted. It
consists of words, chunks or clauses that are found within (S,E) and
that are directly rooted at the current clause.

2. Argument candidates are formed with top-most elements. In partic-
ular, all subsequences of contiguous top-most elements are possible
candidate arguments of the clause. At this point, the filter applies:
a phrase (s, e) is a candidate argument for the semantic role k only
if xs and xe receive a positive start-end prediction, respectively.

3. Then, the target verbs found within the clause are considered: either
a verb is local to the clause (the verb chunk is directly rooted in it),
or it is at a deeper level (it is contained within a clause rooted at the
current clause).

4. Each candidate argument (s, e) is scored with each verb v of the
clause, for semantic roles k that pass the filter. Before scoring, some
further filtering conditions are applied: (a) the verb is not in within
the argument (v <s or e<v), and (b) if the verb is not local to the
clause, the argument must be to the left of the verb (e<v).

5. With dynamic programming, the best-scored argument hierarchy is
built, checking that:

– Arguments do not cross boundaries.

– Arguments related to the same verb are not embedded.

This recognition procedure relies on the observations mentioned above, and
ensures that the resulting structure is an argument hierarchy, where the argu-
ments related to a verb form a chunking.

126 A Pipeline of Systems for Syntactic-Semantic Parsing

5.5.2 Features

The features of the system are extracted from three types of elements: words,
target verbs, and arguments. They are formed making use of PoS tags, chunks
and clauses of the sentence. Basically, the features we use are based on previous
work on SRL, namely the pioneer system of Gildea and Jurafsky [2002], and
those of Surdeanu et al. [2003] and Pradhan et al. [2005]. The main difference,
though, is that the mentioned systems work on the top of a full syntactic tree,
whereas in our approach we build on partial syntax only. Hence, most of the
presented features can be thought as adaptations of the original features to our
setting. Most of systems presented in CoNLL-2004 proceeded this way.

Representation of Words

As in previous tasks, features for the start-end decisions are extracted via word-
windows placed at the candidate boundary words. Considering a window cen-
tered at word xi, the following extraction patterns are applied to [xj]i+2

j=i−2:

• PoS tag.

• Form, if the PoS tag belongs to a closed category4.

• Chunk type, of the chunk containing the word.

• Binary-valued flags, indicating structural properties of the word with
respect to chunks and clauses enclosing the word:

– Its chunk is one-word or multi-word

– Starts and/or ends, or is strictly within a chunk (3 flags)

– Starts and/or ends clauses (2 flags)

– Aligned with a target verb;

– First and/or last word of the sentence (2 flags)

Representation of Argument Candidates

The score function receives in its parameters a sentence x, a target verb v and
an argument candidate (s, e) for playing the role k with the target verb. We
divide the list of feature extraction patterns in three categories, depending on
which part of the decision context they are applied:

• Extraction on the Argument (s, e):

– Window-based features, of words s−1, s, e, and e+1, each anchored
with its relative position.

– PoS Sequence, of PoS tags from xs to xe. In particular, (a) n-
grams of size 2, 3 and 4; and (b) The complete PoS pattern, if it is
less than 5 tags long.

4The PoS tag does not match with the Perl regexp: /ˆ(CD|FW|J|LS|N|POS|SYM|V)/

5.5 Semantic Role Labeling (SRL) 127

– TOP sequence: tags of the top-most elements found strictly from
s to e. The tag of a word is its PoS. The tag of a chunk is its type.
The tag of a clause is its type (S) enriched as follows: if the PoS
tag of the first word matches /^(IN|W|TO)/ the tag is enriched with
the form of that word (e.g., S-to); if that word is a verb, the tag is
enriched with its PoS (e.g., S-VBG); otherwise, it is just S. For exam-
ple, in Figure 5.5, the A1 argument for “raise”, “((rates)NP (on)PP
(containers)NP (carrying U.S. exports to Asia)S)”, is represented as
NP_PP_NP_S-VBG. The following features are extracted from the se-
quence: (a) n-grams of sizes 2, 3 and 4; (b) The complete pattern, if
it is less than 5 tags long; and (c) Anchored tags of the first, second,
penultimate and last elements.

– Bag of Words: we consider the top-most elements of the argument
which are not clauses, and extract all nouns, adjectives and adverbs.
We then form a separate bag for each category.

– Lexicalization: the form of the head of the first top-most element
of the argument, via the common head word rules by Collins [1999]
adapted to partial syntax. If the first element is a PP chunk, we also
extract the head of the first NP found.

• Extraction on the Target Verb v:

– Form, PoS tag, and infinitive form of xv.
– Voice : active or passive. The heuristic rule associated to the indi-

cator is as follows: xv is in passive voice only if xv has PoS tag VBN,
and either its chunk is not VP or xv is preceded by a form of “to be”
or “to get” within its chunk.

– Chunk type of the chunk that contains xv.
– Binary-valued flags, indicating structural properties of xv with

respect to chunks and clauses:

∗ The chunk of xv is multi-word or not

∗ xv starts and/or ends clauses (2 flags)

• Extraction on the Verb-Arg Relation, (s, e) → v:

– Distance of v to s and to e: for both pairs, a flag indicating if
distance is {0, 1,−1, >1, <−1}.

– PATH sequence: tags of elements found between the argument
and the verb. It is formed by a concatenation of horizontal tags and
vertical tags. The horizontal tags correspond to the TOP sequence
of elements at the same level of the argument, from it to the phrase
containing the verb, both excluded. The vertical part is the list of
tags of the phrases which contain the verb, from the phrase at the
level of the argument to the verb. The tags of the PATH sequence are
extracted as in the TOP sequence, with an additional mark indicating
whether an element is horizontal to the left or to the right of the

128 A Pipeline of Systems for Syntactic-Semantic Parsing

argument, or vertical. The following features are extracted: (a) n-
grams of sizes 4 and 5; and (b) The complete pattern, if it is less
than 5 tags long.

5.5.3 Results

We trained a system in CoNLL-2004 data that implements the presented archi-
tecture for recognizing arguments labeled with PropBank semantic roles. As a
final consideration, the filtering component made no differentiation on the num-
bered arguments. In other words, the start-end functions considered a single
type AN for the numbered types (A0–A4).

We ran the learning algorithm on the training set with a polynomial kernel
of degree 2, for up to 8 epochs. Table 5.6 presents the obtained results on the
development set for several configuration of the learning functions. In particu-
lar, we show results using perfect and/or learned filters and rankers. The first
row provides results for perfect functions: the performance is not perfect due
to limitations of our exploration (e.g., some of the observations we have made
do not hold for some unfrequent cases). The second and third rows provide,
respectively, the loss suffered because of errors in the filtering and scoring layer.
The filtering layer performs reasonably well, since 89.44% recall can be achieved
on the top of it. However, the scoring functions clearly moderate the perfor-
mance, since working with perfect start-end functions only achieve an F1 at
75.60. Finally, table 5.7 presents final detailed results on the test set.

5.5.4 Comparison to Other Works

Table 5.8 shows the overall results of our system together with those of the sys-
tems that contributed to the CoNLL-2004 shared task [Carreras and Màrquez,
2004]. Our system achieved the third position. The second system, of Pun-
yakanok et al. [2004], obtained a performance very close to ours. They used two
layers of winnow-based learners, that emitted predictions for argument bound-
aries and candidates. Interestingly, such predictions were feed into an ILP-based
inference engine, that took into account several task-dependent constraints that
were forced in the final solution. The top-performing system, of Hacioglu et al.
[2004], transformed the SRL task into a BIO-based chunking task. They used
Support Vector Machines as learners, that were greedily applied to syntactic
chunks in the sentence to determine begin and inside parts of arguments.

A main characteristic of the 2004 shared task edition is that SRL systems
work with partial syntax. Most of systems found in the literature, pioneered
by that of Gildea and Jurafsky [2002], work with a full syntactic tree. In this
setting, the most recent studies situate the SRL performance at around 80 in F1

measure [Surdeanu et al., 2003; Pradhan et al., 2005]. The CoNLL-2005 Shared
Task [Carreras and Màrquez, 2005] addressed again the SRL task, introducing
full parsing information in the input, apart from partial parsing. One of the
conclusions of that evaluation was that systems based on full syntax are su-
perior in performance than systems based on partial syntax. However, all the

5.5 Semantic Role Labeling (SRL) 129

Configuration Precision Recall Fβ=1

gold–start-end, gold–score 99.92 94.73 97.26
start-end, gold–score 99.90 89.44 94.38
gold–start-end, score 85.12 67.99 75.60
start-end, score 73.40 63.70 68.21

Table 5.6: Performance in Semantic Role Labeling, on the development set.
Functions with prefix gold are gold functions, providing bounds of our perfor-
mance. The top row is the upper bound performance of our architecture. The
bottom row is the real performance.

Precision Recall Fβ=1

Overall 71.81 61.11 66.03
A0 81.83 76.46 79.05
A1 68.73 65.27 66.96
A2 59.41 34.03 43.28
A3 58.18 21.33 31.22
A4 72.97 54.00 62.07
A5 00.00 00.00 00.00
AM-ADV 54.50 35.50 43.00
AM-CAU 58.33 28.57 38.36
AM-DIR 64.71 22.00 32.84
AM-DIS 64.06 57.75 60.74
AM-EXT 100.0 50.00 66.67
AM-LOC 35.62 22.81 27.81
AM-MNR 50.89 22.35 31.06
AM-MOD 97.57 95.25 96.40
AM-NEG 90.23 94.49 92.31
AM-PNC 36.11 15.29 21.49
AM-PRD 00.00 00.00 00.00
AM-TMP 61.86 48.86 54.60
R-A0 78.85 77.36 78.10
R-A1 64.29 51.43 57.14
R-A2 100.0 22.22 36.36
R-A3 00.00 00.00 00.00
R-AM-LOC 00.00 00.00 00.00
R-AM-MNR 00.00 00.00 00.00
R-AM-PNC 00.00 00.00 00.00
R-AM-TMP 00.00 00.00 00.00

V 98.32 98.24 98.28

Table 5.7: Performance in Semantic Role Labeling on the test set, detailed for
each semantic role. The role denoting the verbal predicate (V) is excluded in
the overall measures.

130 A Pipeline of Systems for Syntactic-Semantic Parsing

Reference Algorithm Precision Recall F1

Hacioglu et al. [2004] SVM 72.43 66.77 69.49
Punyakanok et al. [2004] Winnow 70.07 63.07 66.39
Carreras et al. [2004] FR-Perceptron 71.81 61.11 66.03
Lim et al. [2004] Max-Entropy 68.42 61.47 64.76
Park et al. [2004] SVM 65.63 62.43 63.99
Higgins [2004] TBL 64.17 57.52 60.66
van den Bosch et al. [2004] Memory-Based 67.12 54.46 60.13
Kouchnir [2004] Memory-Based 56.86 49.95 53.18
Baldewein et al. [2004] Max-Entropy 65.73 42.60 51.70
Williams et al. [2004] TBL 58.08 34.75 43.48

Table 5.8: Comparison on Semantic Role Labeling of CoNLL-2004, for the ten
systems presented in that edition. Results correspond to test data. The second
column corresponds to the learning algorithm used by each system. To explain
the difference in performance, though, other components of the systems need to
be considered, such as the SRL recognition strategy and the features (see the
introductory paper of the task for a detailed comparison [Carreras and Màrquez,
2004])

.

top-performing systems of the 2005 edition made use of several syntactic views
(chunks, clauses, and several different full parse trees) by means of system com-
bination. In our opinion, the proper level of syntax needed for SRL is still an
open question for future research.

5.6 Conclusion of this Chapter

This chapter has presented the application of the filtering-ranking strategy
to three phrase recognition problems, under the settings proposed in CoNLL
Shared Task series. We have shown that the presented architecture can be
adapted to recognize phrase structures of different characteristics: a single or
several phrase types, and sequential or recursive phrase structures. In all cases,
our systems obtain a good performance in the CoNLL Shared Task evalua-
tions. It can be concluded, thus, that our systems are situated among the
top-performing systems in the state-of-the-art.

Chapter 6

Conclusion

To conclude the thesis, we summarize the contributions and results of this work,
and we discuss some directions for future research.

6.1 Summary and Results

We have developed a framework for the problem of recognizing sequential and
hierarchical phrase structures. The framework implements the idea that phrase
structures can be recognized with learning techniques and inference processes.
The strategies we study decompose a phrase recognition problem into many
decisions that are learnable (or, at least, assumed to be so). Inference is the
process that combines such decisions to recognize the phrase structure of a
sentence, efficiently and robustly. The learning decisions consist of predicting
which pieces of a sentence structure correspond to words or groups of words
of the sentence. We have derived this idea to word-based and phrase-based
learners, with appropriate decompositions for them. Then, we have described
incremental inference strategies for these decompositions. Due to incrementality,
the type of inference allows to use a partial structure that has been recognized
to support the prediction of a piece that increments such partial structure.
This property allows learners to benefit from high-order expressive features that
exploit dependencies between input-output parts of the data. We have shown
that, on the one hand, exploiting such dependencies benefits the accuracy of
learners, while requires more complex exploration strategies to guarantee exact
inference. On the other hand, if very accurate learners can be obtained, one
can introduce pruning conditions in the exploration that make inference more
efficient, such as discarding low-scored exploration paths. So, a main question
is what level of dependencies are needed to obtain accurate learned decisions,
and to which extent the inference process can rely on the output of learners to
discard solutions.

The main contribution of the thesis is a particular phrase recognition ar-
chitecture based on filters and rankers. This architecture goes a step further

132 Conclusion

than the common word-based tagging approaches used for chunking problems.
Our filtering-ranking approach applies a tagging on words to identify possible
phrases in a sentence –or, in other words, to filter out most of the possibilities.
Then, given the reduced set of phrase candidates, it predicts confidence scores
for them and builds the best phrase structure for the sentence, considering de-
pendencies between phrases of a same structure.

Together with the phrase recognition strategy, we have presented a global
learning algorithm for it, that we name FR-Perceptron. The FR-Perceptron
algorithm is based on the global Perceptron scheme by Collins [2002], and is
particularly tailored for the task of recognizing phrases with a filtering-ranking
approach. Specifically, the algorithm learns the filters and rankers of the archi-
tecture at the same time, aiming at benefiting from the interactions that these
functions exhibit within the architecture.

Such techniques have been put into practice in real phrase recognition tasks,
such as syntactic chunking, clause identification and semantic role labeling.
First, we have designed a series of experiments to test the behavior of FR-
Perceptron, and to contrast it with other learning algorithms. From these exper-
iments, we conclude that FR-Perceptron effectively approximates the learning
functions of the architecture as filters and rankers, and that this fact positively
contributes to better evaluation measures of the whole architecture. Second,
the resulting phrase recognition systems trained with FR-Perceptron are very
competitive in performance, contrasted with other systems in the literature. For
the sequential task, syntactic chunking, our system achieves evaluation scores
very close to the top-performing system. On the identification of clause hier-
archies, a task more complex than chunking due to its recursive nature, our
system obtains the best result on the task, and outperforms a previous result
from us. Finally, on the recognition of semantic roles on the basis of partial
syntactic information, our architecture is among the best ones.

6.2 Future Directions

We differentiate five main directions of future research.

6.2.1 From Greedy to Robust Inference

Directly related to the research presented in this thesis, we would like to conduct
a series of experiments to test the influence of robustifying the inference strategy
for a fixed model, in the context of syntactic chunking and clause identification.

In particular, for the filtering-ranking phrase recognition model, we aim to
explore different inference strategies that go from greedy to exact global opti-
mizations. These strategies, sketched in Section 3.3.2, build the phrase structure
incrementally by visiting phrase spans of the sentence. The most greedy strat-
egy assigns the final local structure in a span when visiting it, without the
possibility of trading off such assignment with competing structure that would
be recognized later. In contrast, an exact strategy maintains all plausible so-

6.2 Future Directions 133

lutions, and trades off competing local assignments to build the optimal global
structure. In the middle of these, there exist a range of approximate inference
strategies that rely on the ability of the learning functions at predicting neg-
ative scores for non-plausible local assignments, and, with them, explore only
the phrase structures formed of positive local assignments.

In the series of experiments, such architectures would be trained with FR-
Perceptron, to guarantee that the interactions between the learning functions
that take place in the inference process can be properly captured. Moreover,
each inference strategy can be tested with a set of functions trained indepen-
dently of inference. Thus, the series of experiments would explore different de-
grees of robustness in inference, and the influence of training locally or globally
such architectures.

Our intuition is that, in general, evaluation results will increase with more
robust inference algorithms. However, we expect also to observe that approxi-
mate inference can lead to very competitive results, being much more efficient
than exact inference. If this idea is confirmed, we would like to devise what is
the most desired configuration in the trade-off between efficiency and robustness
in learning and inference phrase recognition systems.

6.2.2 Learning issues for FR-Perceptron

We outline three research lines related to the learning strategy of FR-Perceptron.

• The convergence analysis of FR-Perceptron we have presented relies on
strong assumptions that, in practice, are not needed. In particular, the
filtering functions are analyzed as general binary classifiers, and it is as-
sumed that perfect separability in the filtering stage is possible. However,
these functions act only as a filter, that is, it is not critical that filters
produce false positive errors. Ideally, the analysis of FR-Perceptron has
to show that the algorithm converges as long as: (1) the filters do not
block any correct phrase, and (2) phrases that pass the filter can be prop-
erly scored so that the correct structure is the top-ranked one. Moreover,
we would like to analyze whether by approximating the filters close to
a perfect separation, the number of training errors needed to train the
ranking layer decreases, as a consequence of the simplification that filters
produce in the input space of the ranker. Hopefully, gaining more un-
derstanding on the theoretical side will give clues on how to improve the
FR-Perceptron learning strategy.

• FR-Perceptron learns by visiting one example at a time, updating the
learning functions depending on the predictions on that example. In big
training sets –such as those we work with, with tens of thousands of sen-
tences, and many local predictions at each sentence– this simple strategy
can be a bit inefficient. Generally, the practical situation is that after
visiting a relatively small number of examples, the learning functions pro-
duce few errors. However, to encounter such errors the learner has to visit

134 Conclusion

many examples that are already well-predicted. Since visiting an example
is time-consuming, we would like to incorporate a strategy for concen-
trating on difficult examples. In the literature, Collins and Roark [2004]
maintain a cache of examples in which Perceptron has failed, which are vis-
ited after every update. Also related, the maximum margin approaches for
structured-output recognition [Taskar et al., 2003; Tsochantaridis et al.,
2004] maintain an active set of learning constraints (i.e., related to support
examples) that are used to estimate the optimal separator.

• FR-Perceptron takes advantage of being a mistake-driven online algorithm
to train many functions dependently. It is based on Perceptron, which
learns by additive function updates. We would like to experiment with
Winnow-based updates [Littlestone, 1988], that is, multiplicative updates
that are known to be more efficient than additive updates in the present
of many irrelevant features.

6.2.3 Natural Language Tasks

We would like to move to other complex Natural Language Processing tasks
which involve the recognition of structures, and can be decomposed into many
simple steps. In these tasks, we would like to apply global learning, and test the
benefits of training dependently several functions that work at different levels.
Examples of these tasks include:

• Two annotation levels in one task. For example, part-of-speech tag-
ging and chunking, or recognizing partial syntax consisting of chunks and
clauses.

• Full parsing task, as complex task that deals with fine-grained syntactic
trees.

• Basic Syntax and Semantic Roles. This task consists of recognizing a basic
level of syntax (not necessarily full), together with the argument structures
of the predicates in the sentence. An argument of a predicate always
corresponds to some syntactic constituent of the sentence, and plays a
semantic relation with the corresponding predicate. Thus, this task is
attractive because it lies at the syntactico-semantic level, and allows to
exploit coherence of a solution.

For English, the Penn TreeBank [Marcus et al., 1993], together with Prop-
Bank [Palmer et al., 2005], contains enough annotations to derive datasets for
the mentioned tasks. In addition, we are concerned with building phrase recog-
nition systems for Catalan and Spanish, making use of the recently released 3LB
TreeBank for such languages [Palomar et al., 2003]. The analyzers obtained in
this study would be useful to build language applications, such as information
extraction or question answering systems.

6.2 Future Directions 135

6.2.4 Introducing Knowledge

The phrase recognition architectures we have discussed allow to introduce lin-
guistic and task-specific knowledge to support the recognition process.

Up to now, the only type of knowledge is basically in terms of the features
that represent a learning instance. While most of the features capture exhaus-
tively patterns that are based on positions (e.g., “extract the PoS of the current
word”), others look for specific linguistic patterns or other knowledge-based
phenomena (e.g, “check whether there is only one transitive verb in the span”).

A second possibility is to introduce knowledge that guides the exploration for
building the phrase structure. Actually, the clause recognizer we have presented
follows the heuristic of considering only clauses that do not overlap with the
chunks provided in the input. This heuristic reduces substantially the search
space of the clause recognizer, while ensures that the clause structure will be
coherent with the chunk structure (note that, when chunks are not perfectly
correct, following this heuristic may degrade the accuracy on clauses). As the
complexity of the structures increases (specially if we aim to resolve several
layers dependently), there is a need to use a principled mechanism, such as
a grammar, that dynamically controls the phrases that are visited during the
exploration, given the phrases that are already recognized and those provided
in the input. In this line, the general architecture is that of a parser that is
trained discriminatively to select the best structure generated by the grammar,
as in the systems proposed by Collins and Roark [2004], Taskar et al. [2004]
or Tsochantaridis et al. [2004]. In our opinion, the underlying grammar of
a discriminative learning-based parser must be kept simple, and be used to
avoid visiting invalid solutions. Consequently, the exploration becomes faster
and the disambiguation problem becomes simpler. For instance, we would like
to incorporate the grammar formalisms for chunk-based structure proposed by
Abney [1991]. Then, on the top of this informed exploration, the learning
components carry out the disambiguation of valid candidate structures, possibly
making use of rich lexical information and other type of knowledge.

Following the ideas of Roth and Yih [2004], the third possibility for intro-
ducing knowledge is thought as constraints on the global solution, that express
dependencies between different elements of the structure. Such dependencies
have to be satisfied to ensure coherence of the global structure, but, due to their
global nature, they are not considered during the incremental recognition. For
example, in the context of syntactic chunking, one may require that there must
be at least one verb phrase in the chunk sequence of a sentence. Or, one may
run simultaneously a named entity recognizer and a chunker, each independent
of the other, and then require coherence between the resulting structures. So,
in the resulting architecture, the generation mechanism defines which solutions
are well-formed, and the global constraints define which well-formed solutions
are coherent. The former generates a number of scored global solutions, and
the later are used to select the top-scored one that satisfies the constraints.

136 Conclusion

6.2.5 On Representations and Kernels

The family of learning algorithms that accept kernel functions —known as kernel
methods [Schölkopf and Smola, 2002]— offer the possibility to make use of kernel
functions that are specially designed to deal with structured data. Such kernel
functions are known as convolution kernels [Haussler, 1999], and compute the
similarity between two given structures by looking at common substructures.
In literature related to learning in Natural Language, this general idea has been
developed for string kernels [Lodhi et al., 2002], kernels for sequences and trees
[Collins and Duffy, 2001, 2002], and kernels for data represented in directed
acyclic graphs [Suzuki et al., 2003].

While the representation spaces induced by convolution kernels are very
powerful, a main drawback is that computing a kernel operation between two
structures with a convolution kernel is time-consuming, although being of poly-
nomial cost. Moreover, with kernel methods, computing a prediction trans-
lates into computing a kernel operation for every dual vector that composes the
predictor. In complex domains, such as natural language, a predictor can be
composed of tens thousands of dual vectors, which makes the computation of a
prediction very time consuming.

Due to this fact, up to now structured kernel functions have been applied
only to classification and reranking tasks, where there is a reasonable number of
predictions to be computed. To our knowledge, for tasks that require intensive
use of predictors, such as segmenting a sentence into a structure, there are no
works on applying structured kernel functions.

It turns out that, with structured data, both a recognition strategy and
a kernel calculation are based on a divide and conquer scheme. We would
like to gain understanding on both processes, and to come up with a unified
kernel-based recognition strategy, that builds up structure from the bottom up,
calculating kernel operations and incrementing structure at the same time. We
believe that, by unifying these processes, the overall computational cost could
be high but feasible.

A complementary direction is to explore the trade off in computational cost
between working with the dual form (facing the problem of dealing with many
dual vectors), or in primal form (facing the problem of dealing with a feature
space of very large dimensionality). For polynomial kernels, the primal form has
been shown to be more efficient than the dual form [Kudo and Matsumoto, 2003].
For more sophisticated representations, Cumby and Roth [2003] have proposed
a principled language for specifying a desired representation. This language
contemplates propositionalized relational patterns, as well as kernel-like feature
expansions. Then, a specification of a representation can be translated into a
kernel function for working in dual form, or an equivalent feature extraction
function for working in primal form.

Bibliography

S. Abney. Rapid incremental parsing with repair. In Proceedings of the 6th New
OED Conference: Electronic Text Research, pages 1–9, Waterloo, Ontario,
1990.

S. Abney. Partial parsing via finite-state cascades. In Proceedings of the ESS-
LLI’96 Robust Parsing Workshop, Prache, Czech Republic, 1996a.

S. P. Abney. Parsing by chunks. In R. C. Berwick, S. P. Abney, and C. Tenny,
editors, Principle-based parsing: Computation and Psycholinguistics, pages
257–278. Kluwer, Dordrecht, 1991.

S. P. Abney. Part-of-speech tagging and partial parsing. In Ken Church, Steve
young, and Gerrit Bloothooft, editors, Corpus-Based Methods in Language
and Speech. Kluwer, Dordrecht, 1996b.

Y. Altun, T. Hofmann, and M. Johnson. Discriminative learning for label se-
quences via boosting. In Advances in Neural Information Processing Systems
(NIPS-15), 2002.

Y. Altun, I. Tsochantaridis, and T. Hofmann. Hidden Markov Support Vector
Machines. In Proceedings of the 20th International Conference on Machine
Learning, ICML-03, Washington, DC USA, 2003.

Rie Ando and Tong Zhang. A high-performance semi-supervised learning
method for text chunking. In Proceedings of the 43rd Annual Meeting of the
Association for Computational Linguistics (ACL’05), pages 1–9, Ann Arbor,
Michigan, 2005.

S. Argamon, I. Dagan, and Y. Krymolowski. A memory-based approach to
learning shallow natural language patterns. Journal of Experimental and
Theoretical AI, 11:369–390, 1999.

U. Baldewein, K. Erk, S. Padó, and D. Prescher. Semantic role labeling with
chunk sequences. In Proceedings of CoNLL-2004, 2004.

C. Burges. A Tutorial on Support Vector Machines for Pattern Recognition.
Knowledge Discovery and Data Mining, 2(2), 1998.

138 BIBLIOGRAPHY

X. Carreras and L. Màrquez. Boosting trees for clause splitting. In Proceedings
of CoNLL-2001, pages 73–75. Toulouse, France, 2001.

X. Carreras and L. Màrquez. Online Learning via Global Feedback for Phrase
Recognition. In Proceedings of the 17th Annual Conference on Neural Infor-
mation Processing Systems, NIPS-03, Vancouver, Canada, 2003a.

X. Carreras and L. Màrquez. Phrase Recognition by Filtering and Ranking
with Perceptrons. In Proceedings of the 4th Conference on Recent Advances
on Natural Langugae Processing, RANLP-03, Borovets, Bulgaria, 2003b.

X. Carreras and L. Màrquez. Introduction to the CoNLL-2004 Shared Task:
Semantic Role Labeling. In Proceedings of the 8th Conference on Natural
Language Learning, CoNLL-2004, Boston, MA USA, 2004.

X. Carreras and L. Màrquez. Introduction to the CoNLL-2005 Shared Task:
Semantic Role Labeling. In Proceedings of the 9th Conference on Natural
Language Learning, CoNLL-2005, Ann Arbor, MI USA, 2005.

X. Carreras, L. Màrquez, and J. Castro. Filtering-ranking perceptron learning
for partial parsing. Machine Learning, 59:1–31, 2005.

X. Carreras, L. Màrquez, and G. Chrupa la. Hierarchical Recognition of Propo-
sitional Arguments with Perceptron. In Proceedings of the 8th Conference on
Natural Language Learning, CoNLL-2004, Boston, MA, USA, 2004.

X. Carreras, L. Màrquez, and L. Padró. Named Entity Extraction using Ad-
aBoost. In Proceedings of the 6th Conference on Natural Language Learning,
CoNLL-2002, Taipei, Taiwan, 2002a.

X. Carreras, L. Màrquez, and L. Padró. A Simple Named Entity Extractor
Using AdaBoost. In Proceedings of the 7th Conference on Natural Language
Learning, CoNLL-2003, Taipei, Taiwan, 2003a.

X. Carreras, L. Màrquez, and L. Padró. Learning a Perceptron-Based Named
Entity Chunker via Online Recognition Feedback. In Proceedings of the 7th
Conference on Natural Language Learning, CoNLL-2003, Taipei, Taiwan,
2003b.

X. Carreras, L. Màrquez, V. Punyakanok, and D. Roth. Learning and Inference
for Clause Identification. In Proceedings of the 14th European Conference on
Machine Learning, ECML-02, Helsinki, Finland, 2002b.

E. Charniak. Statistical Language Learning. MIT Press, 1993.

E. Charniak. A maximum-entropy-inspired parser. In Proceedings of NAACL-
2000, 2000.

S. Chen and J. Goodman. An empirical study of smoothing techniques for
language modelling. In Proceedings of the 34th Meeting of the Association for
Computational Linguistics, pages 310–318, 1996.

BIBLIOGRAPHY 139

K. W. Church. A stochastic parts program and noun phrase parser for un-
restricted text. In Proceedings of 2nd ACL Workshop on Applied Natural
Language Processing (ANLP), Austin, Texas, 1988.

M. Collins. Head-driven Statistical Models for Natural Language Parsing. PhD
thesis, University of Pennsylvania, 1999.

M. Collins. Discriminative reranking for natural language parsing. In Proceed-
ings of the 17th International Conference on Machine Learning, ICML-00,
Stanford, CA USA, 2000.

M. Collins. Discriminative training methods for hidden markov models: Theory
and experiments perceptron algorithms. In Proceedings of the SIGDAT Con-
ference on Empirical Methods in Natural Language Processing, EMNLP-02,
2002.

M. Collins. Parameter estimation for statistical parsing models: Theory and
practice of distribution-free methods. In Harry Bunt, John Carroll, and
Giorgio Satta, editors, New Developments in Parsing Technology, chapter 2.
Kluwer, 2004.

M. Collins and N. Duffy. Convolution kernels for natural language. In Proceed-
ings of NIPS’01, 2001.

M. Collins and N. Duffy. New Ranking Algorithms for Parsing and Tagging:
Kernels over Discrete Structures, and the Voted Perceptron. In Proceedings
of the 40th Annual Meeting of the Association for Computational Linguistics,
ACL’02, 2002.

M. Collins and T. Koo. Discriminative reranking for natural language parsing.
Computational Linguistics, 31(1):25–69, 2005.

M. Collins and B. Roark. Incremental parsing with the perceptron algorithm.
In Proceedings of the ACL, 2004.

C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):
273–297, 1995.

K. Crammer and Y. Singer. On the algorithmic implementation of multiclass
kernel-based vector machines. Journal of Machine Learning Research, 2(5):
265–292, 2001.

K. Crammer and Y. Singer. A family of additive online algorithms for category
ranking. Journal of Machine Learning Research, 3:1025–1058, 2003a.

K. Crammer and Y. Singer. Ultraconservative online algorithms for multiclass
problems. Journal of Machine Learning Research, 3:951–991, 2003b.

N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Ma-
chines. Cambridge University Press, Cambridge, UK, 2000.

140 BIBLIOGRAPHY

C. Cumby and D. Roth. On Kernel Methods for Relational Learning. In Proceed-
ings of the 20th International Conference on Machine Learning, ICML-2003,
Washington, DC USA, 2003.

W. Daelemans, A. van den Bosch, and T. Weijters. Empirical learning of natural
language processing tasks. In Proceedings of the ECML-97, pages 337–344,
Berlin, Germany, 1997.

I. Dagan and Y. Krymolowski. Compositional partial parsing by memory-based
sequence learning. In R. Bod, R. Scha, and K. Sima’an, editors, Data-Oriented
Parsing, chapter ? CSLI Publications, 2001.

T. G. Dietterich. Machine learning for sequential data: A review. In Structural,
Syntactic, and Statistical Pattern Recognition, 2002.

E. Ejerhed. Finding clauses in unrestricted text by finitary and stochastic meth-
ods. In Proceedings of the 2nd ACL Workshop on Applied Natural Language
Processing (ANLP), Austin, Texas, 1988.

Y. Freund and R. E. Schapire. Large margin classification using the perceptron
algorithm. Machine Learning, 37(3):277–296, 1999.

Daniel Gildea and Daniel Jurafsky. Automatic labeling of semantic roles. Com-
putational Linguistics, 28(3):245–288, 2002.

G. Grefenstette. Light parsing as finite-state filtering. In Workshop on Extended
Finite State Models of Language, ECAI’96, 1996.

K. Hacioglu, S. Pradhan, W. Ward, J. Martin, and D. Jurafsky. Semantic role
labeling by tagging syntactic chunks. In Proceedings of CoNLL-2004, 2004.

J. Hammerton, M. Osborne, S. Armstrong, and W. Daelemans. Introduction to
the special issue on machine learning approaches to shallow parsing. Journal
of Machine Learning Research, 2:551–558, 2002.

S. Har-Peled, D. Roth, and D. Zimak. Constraint Classification for Multiclass
Classification and Ranking. In Proceedings of the 16th Annual Conference on
Neural Information Processing Systems, NIPS-02, 2002.

D. Haussler. Convolution kernels on discrete structures. Technical Report
UCSC-CRL-99-10, University of California at Santa Cruz, 1999.

D. Higgins. A transformation-based approach to argument labeling. In Proceed-
ings of CoNLL-2004, 2004.

T. Joachims. Making large-scale svm learning practical. In B. Schölkopf,
C. Burges, and A. Smola, editors, Advances in Kernel Methods – Support
Vector Learning. MIT Press, 1999.

M. Johnson. Joint and conditional estimation of tagging and parsing models.
In Proceedings of the 39th meeting of the ACL, 2001.

BIBLIOGRAPHY 141

M. Johnson, S. Geman, S. Canon, Z. Chi, and S. Riezler. Estimators for stochas-
tic ”unification-based” grammars. In Proceedings of the 37th meeting of the
ACL, 1999.

M. I. Jordan. Graphical models. Statistical Science, Special Issue on Bayesian
Statistics, 19:140–155, 2004.

D. Jurafsky and J. H. Martin. An Introduction to Natural Language Processing,
Computational Linguistics, and Speech Recognition. Prentice-Hall, 2000.

M. J. Kearns and U. V. Vazirani. An Introduction to Computational Learning
Theory. The MIT Press, Cambridge, MA, 1994.

D. Klein and C. Manning. Conditional Structure versus Conditional Estimation
in NLP Models. In Proceedings of EMNLP, 2002.

B. Kouchnir. A memory-based approach for semantic role labeling. In Proceed-
ings of CoNLL-2004, 2004.

T. Kudo and Y. Matsumoto. Use of Support Vector Learning for Chunk Iden-
tification. In Proceedings of CoNLL-2000 and LLL-2000, Lisbon, Portugal,
2000.

T. Kudo and Y. Matsumoto. Chunking with Support Vector Machines. In Pro-
ceedings of the North American Chapter of the Association for Computational
Linguistics Conference, NAACL-01, 2001.

T. Kudo and Y. Matsumoto. Fast Methods for Kernel-based Text Analysis.
In Proceedings of the 41st Meeting of the ACL (ACL-2003), Sapporo, Japan,
2003.

J. Lafferty, A. McCallum, and F. Pereira. Conditonal random fields: Proba-
bilistic models for segmenting and labeling sequence data. In Proceedings of
the 18th International Conference on Machine Learning, ICML-01, 2001.

X. Li and D. Roth. Exploring evidence for shallow parsing. In Proceedings of
CoNLL-2001, pages 107–110, Toulouse, France, 2001.

J. Lim, Y. Hwang, S. Park, and H. Rim. Semantic role labeling using maximum
entropy model. In Proceedings of CoNLL-2004, 2004.

N. Littlestone. Learning quickly when irrelevant attributes abound: A new
linear-threshold algorithm. Machine Learning, 2:285–318, 1988.

H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text
Classification using String Kernels. Journal of Machine Learning Research,
2:419–444, 2002.

D. M. Magerman. Learning Grammatical Structure Using Statistical Decision–
Trees. In Proceedings of the 3rd International Colloquium on Grammatical
Inference, ICGI, pages 1–21, 1996. Springer-Verlag Lecture Notes Series in
Artificial Intelligence 1147.

142 BIBLIOGRAPHY

M. P. Marcus, B. Santorini, and M. Marcinkiewicz. Building a large annotated
corpus of English: The Penn Treebank. Computational Linguistics, 19(2):
313–330, June 1993.

Llúıs Màrquez. Part-of-speech Tagging: A Machine Learning Approach based
on Decision Trees. PhD thesis, Universitat Politècnica de Catalunya, 1999.

A. McCallum, D. Freitag, and F. Pereira. Maximum entropy markov models for
information extraction. In Proceedings of the 17th International Conference
on Machine Learning, Stanford, CA USA, 2000.

T. M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

A. Molina and F. Pla. Clause Detection using HMM. In Proceedings of the 5th
Conference on Natural Language Learning, CoNLL-2001, Tolouse, France,
2001.

M. Muñoz, V. Punyakanok, D. Roth, and D. Zimak. A Learning Approach to
Shallow Parsing. In Proceedings of the joint SIGDAT Conference on Em-
pirical Methods in Natural Language Processing and Very Large Corpora,
EMNLP/VLC, 1999.

A. B. J. Novikoff. On convergence proofs on perceptrons. In Proceedings of
the Symposium on the Mathematical Theory of Automata, volume XII, pages
615–622, 1962.

Ll. Padró. A Hybrid Environment for Syntax-Semantic Tagging. PhD thesis,
Universitat Politècnica de Catalunya, 1997.

M. Palmer, D. Gildea, and P. Kingsbury. The proposition bank: An annotated
corpus of semantic roles. Computational Linguistics, 31(1), 2005.

M. Palomar, M. Civit, A. Dı́az, L. Moreno, E. Bisbal, M. Aranzabe, A. Ageno,
M.A. Mart́ı, and B. Navarro. 3LB: Construcción de una base de datos de
árboles sintáctico-semánticos para el catalán, euskera y castellano. In Pro-
ceedings of the “XX Congreso Anual de la Sociedad Española para el Proce-
samiento del Lenguaje Natural (SEPLN)”, Barcelona, Spain, 2003.

K. Park, Y. Hwang, and H. Rim. Two-phase semantic role labeling based on
support vector machines. In Proceedings of CoNLL-2004, 2004.

S. Pradhan, K. Hacioglu, V. Krugler, W. Ward, J. Martin, and D. Jurafsky. Sup-
port vector learning for semantic argument classification. Machine Learning.
Special issue on Speech and Natural Language Processing, 2005. To appear.

V. Punyakanok and D. Roth. The use of classifiers in sequential inference. In
Proceedings of the 15th Annual Conference on Neural Information Processing
Systems, NIPS-01, 2001.

V. Punyakanok and D. Roth. Inference with classifiers: The phrase identification
problem. Journal of Machine Learning Research, 2004.

BIBLIOGRAPHY 143

V. Punyakanok, D. Roth, W. Yih, D. Zimak, and Y. Tu. Semantic role labeling
via generalized inference over classifiers. In Proceedings of CoNLL-2004, 2004.

L. R. Rabiner. A tutorial on hidden Markov models and selected applications
in speech recognition. Proceedings of the IEEE, 77(2):257–285, 1989.

L. A. Ramshaw and M. P. Marcus. Text chunking using transformation-based
learning. In Proceedings of the Third Annual Workshop on Very Large Cor-
pora, 1995.

A. Ratnaparkhi. Maximum Entropy Models for Natural Language Ambiguity
Resolution. PhD thesis, University of Pennsylvania, 1998.

F. Rosenblatt. The perceptron: A probabilistic model for information storage
and organization in the brain. Psychological Review, 65:386–407, 1958.

D. Roth. Learning to resolve natural language ambiguities: A unified approach.
In AAAI, pages 806–813, 1998.

D. Roth. Learning in natural language. In Proc. of the International Joint
Conference on Artificial Intelligence (IJCAI), pages 898–904, 1999.

D. Roth and W. Yih. A linear programming formulation for global inference in
natural language tasks. In Proceedings of CoNLL-2004, pages 1–8, Boston,
MA USA, 2004.

Y. D. Rubinstein and T. Hastie. Discriminative vs informative learning. In
Proceedings of the 3rd International Conference on Knowledge Discovery and
Data Mining, pages 49,53. AAAI Press, 1997.

R. E. Schapire. The boosting approach to machine learning. an overview. In
Proceedings of the MSRI Workshop on Nonlinear Estimation and Classifica-
tion, Berkeley, CA, 2002.

R. E. Schapire, Y. Freund, P. Barlett, and W. S. Lee. Boosting the margin:
A new explanation for the effectiveness of voting methods. The Annals of
Statistics, 26(5):1651–1686, 1998.

R. E. Schapire and Y. Singer. Improved Boosting Algorithms Using Confidence-
rated Predictions. Machine Learning, 37(3), 1999.

B. Schölkopf and A. Smola. Learning with Kernels. Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, 2002.

F. Sha and F. Pereira. Shallow parsing with conditional random fields. In Pro-
ceedings of the Human Language Technology Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics, HLT-NAACL,
2003.

144 BIBLIOGRAPHY

W. Skut and T. Brants. Chunk tagger. In Proceedings of the ESSLLI-98 Work-
shop on Automated Acquisition of Syntax and Parsing, Saarbrücken, Ger-
many, 1998.

A. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans. Advances in Large
Margin Classifiers. The MIT Press, Cambridge, MA, 2000.

M. Surdeanu, S. Harabagiu, J. Williams, and P. Aarseth. Using predicate-
argument structures for information extraction. In Proceedings of ACL 2003,
Sapporo, Japan, 2003.

C. Sutton, K. Rohanimanesh, and A. McCallum. Dynamic Conditional Ran-
dom Fields: Factorized Probabilistic Models for Labeling and Segmenting
Sequence Data. In Proceedings of the 21st International Conference on Ma-
chine Learning, ICML-04, Alberta, Canada, 2004.

J. Suzuki, T. Hirao, Y. Sasaki, and E. Maeda. Hierarchical directed acyclic
graph kernel: Methods for structured natural language data. In Proceedings
of the 41st Annual Meeting of the Association for Computational Linguistics
(ACL-2003), pages 32–39, 2003.

B. Taskar, C. Guestrin, and D. Koller. Max-Margin Markov Networks. In
Proceedings of the 17th Annual Conference on Neural Information Processing
Systems, NIPS-03, Vancouver, Canada, 2003.

B. Taskar, D. Klein, M. Collins, D. Koller, and C. Manning. Max-margin pars-
ing. In Proceedings of the EMNLP-2004, 2004.

E. Tjong Kim Sang. Text Chunking by System Combination. In Proceedings of
CoNLL-2000 and LLL-2000, Lisbon, Portugal, 2000.

E. Tjong Kim Sang. Memory-based clause identification. In Proceedings of
CoNLL-2001, 2001.

E. Tjong Kim Sang. Introduction to the CoNLL-2002 Shared Task: Language-
Independent Named Entity Recognition. In Proceedings of the 6th Conference
on Natural Language Learning, CoNLL-2002, 2002a.

E. Tjong Kim Sang. Memory-based shallow parsing. Journal of Machine Learn-
ing Research, 2:559–594, 2002b.

E. Tjong Kim Sang and S. Buchholz. Introduction to the CoNLL-2000 shared
task: Chunking. In Proceedings of the 4th Conference on Natural Language
Learning, CoNLL-2000, 2000.

E. Tjong Kim Sang and F. De Meulder. Introduction to the CoNLL-2003 Shared
Task: Language-Independent Named Entity Recognition. In Proceedings of
the 7th Conference on Natural Language Learning, CoNLL-2003, 2003.

BIBLIOGRAPHY 145

E. Tjong Kim Sang and H. Déjean. Introduction to the CoNLL-2001 shared
task: Clause identification. In Proceedings of the 5th Conference on Natural
Language Learning, CoNLL-2001, 2001.

E. Tjong Kim Sang and J. Veenstra. Representing text chunks. In Proceedings
of EACL’99, 1999.

I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector
machine learning for interdependent and structured output spaces. In Pro-
ceedings of the 21st International Conference on Machine Learning, ICML-04,
2004.

L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):
1134–1142, 1984.

A. van den Bosch, S. Canisius, W. Daelemans, I. Hendrickx, and E. Tjong Kim
Sang. Memory-based semantic role labeling: Optimizing features, algorithm,
and output. In Proceedings of CoNLL-2004, 2004.

H. van Halteren. Chunking with WPDV Models. In Proceedings of CoNLL-2000
and LLL-2000, Lisbon, Portugal, 2000.

V. Vapnik. Statistical Learning Theory. John Wiley and Sons, inc., New York,
1998.

V. Vapnik. An overview of statistical learning theory. IEE Transactions on
Neural Networks, 10(5):988–999, 1999.

J. Weston and C. Watkins. Support vector machines for multi-class pattern
recognition. In Proceedings of the 7th European Symposium on Artifical Neural
Networks, 1999.

K. Williams, C. Dozier, and A. McCulloh. Learning transformation rules for
semantic role labeling. In Proceedings of CoNLL-2004, 2004.

T. Zhang, F. Damereau, and D. Johnson. Text chunking based on a generaliza-
tion of winnow. Journal of Machine Learning Research, 2:615–637, 2002.

146 BIBLIOGRAPHY

Appendix A

Proof for FR-Perceptron

Acknowledgement: The following proof was mainly conducted by Jorge Cas-
tro. We thank him for his contribution in this thesis.

We show in this appendix the complete convergence result for the FR-
Perceptron algorithm of Chapter 4. The result we present depends on some
restrictive hypotheses and has to be seen only as a first step in the task of
achieving a deep and more useful analysis.

The convergence proof we give is based on the proof by Novikoff 1962 for the
basic Perceptron algorithm as much as on the proof presented by Collins 2002
for the Perceptron-based sequence tagging algorithm. Assuming separability for
the Phrase Recognition function and linear separability for each of the start and
end classifiers, the number of errors committed by the learning algorithm can
be upper bounded. The proof is presented in two steps, which are described in
the two following subsections.

To simplify the notation in the following analysis, we deliberately eliminate
the k indexes from the formulae, that is, we assume one single type of phrases.
The proof below can be easily extended to the general case with several types
of phrases making two straightforward changes. First, the score vectors wk

would be concatenated in a single scoring vector w ∈ IRd×|K|. Second, we
should assume linear separability for each of the start-end classification functions
associated to k-phrases.

Scoring Layer without Filtering

In this setting, we assume no filtering components in the learning architecture
and we require, for each example (x, y), a search space Ŷ(x) ⊆ Y containing the
solution y. Thus, the Phrase Recognition function can be written as:

R(x) = arg max
y∈Ŷ(x)

∑

p∈y

score(p, x, y)

We can rewrite the R function in terms of a single dot product, by considering

148 Proof for FR-Perceptron

a global representation function Φp, which corresponds to the summation of the
φp representations of all the phrases in y:

R(x) = arg max
y∈Ŷ(x)

∑

p∈y

score(p, x, y)

= arg max
y∈Ŷ(x)

∑

p∈y

w · φp(p, x, y)

= arg max
y∈Ŷ(x)

w ·
∑

p∈y

φp(p, x, y)

= arg max
y∈Ŷ(x)

w · Φp(x, y)

Given this notation and by using the assumption that the solutions are in
the search spaces, the updating rule for the scoring layer of the FR-Perceptron
algorithm can be rewritten globally as follows:

w = w + Φp(x, y) − Φp(x, ŷ)

In this form, the FR-Perceptron algorithm (without filtering) is the same
than the algorithm analyzed in Collins [2002], which proves its convergence. We
reproduce here his theorem, in a more general version which allows an initial
vector w0 different from zero. Later we will use this fact.

Definition 1 A training set S = {(xi, yi)}m
i=1 is separable with margin δ > 0

if there exists some vector w∗ with ||w∗|| = 1 such that:

(∀i : 1 ≤ i ≤ m)(∀z : z ∈ Ŷ(xi) ∧ z 6= yi)

(w∗ · Φp(xi, yi) ≥ w∗ · Φp(xi, z) + δ).

Theorem 2 For any training set S = {(xi, yi)}m
i=1 which is separable with mar-

gin δ > 0, the FR-Perceptron algorithm with no filtering components makes a
number of mistakes bounded by

R2

δ2
+

2‖w0‖

δ
,

where w0 refers to the initial value of w and R is a constant such that (∀i : 1 ≤
i ≤ m) (∀z : z ∈ Ŷ(xi)) (||Φp(xi, yi) − Φp(xi, z)|| ≤ R).

Proof. We essentially follow the main steps in the Collins’ proof for a slightly
weaker version of Theorem 2 that assumes that the initial vector w0 is the zero
vector.

We enumerate the updates made by the FR-Perceptron algorithm by using
an index j and starting from j = 1. We have to show that j is upper bounded
by R2/δ2 + 2‖w0‖/δ.

First, we show a lower bound on the norm of the weight vector at update
number j. Let wj−1 be the weight vector just before the j’th mistake is made.

149

Suppose that this mistake is made at example (xi, yi) and let ŷ be the output
proposed at this example. So, ŷ = arg maxy∈Ŷ(xi)wj−1 · Φp(xi, y). It follows

from the algorithm update rule that wj = wj−1 + Φp(xi, yi) − Φp(xi, ŷ). We
take inner products of both sides with the vector w∗ given by Definition 1:

w∗ · wj = w∗ · wj−1 + w∗ · Φp(xi, yi) − w∗ · Φp(xi, ŷ) ≥ w∗ · wj−1 + δ,

where the inequality follows because the training set is separable with margin
δ. Hence, reasoning by induction, w∗ · wj ≥ w∗ · w0 + jδ. Now, by applying
twice the Schwarz inequality (|u · v| ≤ ‖u‖‖v‖) and using the fact that w∗ has
norm 1 it follows that ‖wj‖ ≥ w∗ · w0 + jδ ≥ jδ − ‖w0‖.

An upper bound for ‖wj‖
2 can be also derived:

‖wj‖
2 = ‖wj−1‖

2 + ‖Φp(xi, yi) − Φp(xi, ŷ)‖2

+2wj−1 · (Φp(xi, yi) − Φp(xi, ŷ))

≤ ‖wj−1‖
2 + R2,

where the last inequality follows because, by assumption, ‖Φp(xi, yi)−Φp(xi, ŷ)‖2 ≤

R2, and wj−1 · (Φp(xi, yi) − Φp(xi, ŷ)) ≤ 0 because yi ∈ Ŷ(xi) (by the hypoth-
esis in this section) and ŷ is the highest scoring candidate for xi under wj−1 in

Ŷ(xi). Reasoning again by induction we have ‖wj‖
2 ≤ ‖w0‖

2 + jR2.

Finally, note that if j ≥ ‖w0‖/δ (otherwise, the bound we want to show is
straightforward) then jδ−‖w0‖ is non-negative and we can combine the bounds
on the norm of wj we have just obtained:

(jδ − ‖w0‖)2 ≤ ‖wj‖
2 ≤ ‖w0‖

2 + jR2.

From this expression it is immediate to see that j ≤ R2/δ2 + 2‖w0‖/δ. 2

Filtering and Scoring

When including the filtering component, the recognition model is written as:

R(x) = arg max
y∈YSE(x)

w · Φp(x, y) ,

where YSE(x) = {y ∈ Y |(∀(s, e) ∈ y)(start(xs, x) > 0 ∧ end(xe, x) > 0)}.

Definition 2 (Start-End separability) A training set {(xi, yi)}m
i=1 is Start-End

Separable with margin γ > 0 if there exist vectors w∗
S and w∗

E with ||w∗
S|| = 1,

||w∗
E|| = 1 such that:

(∀i : 1 ≤ i ≤ m)(∀j : 1 ≤ j ≤ ni)

(goldS(xi
j)(w∗

S · φw(xi
j , x)) ≥ γ ∧ goldE(xi

j)(w∗
E · φw(xi

j , x)) ≥ γ).

150 Proof for FR-Perceptron

In order to show the convergence of the FR-Perceptron algorithm we assume
the separability of the sample in the sense of Definition 1, considering the whole
solution space, Ŷ = Y. In addition, we assume also the Start-End separability
of Definition 2. We will denote by se-lf a learning feedback stage of FR-
Perceptron where updates affect to the start-end vectors {wS,wE} and maybe
the score vector w, and by score-lf those stages where updates only changes
the score vector. Our goal is to bound the number of se-lf and score-lf

stages, and, therefore, the number of training errors. We start by bounding the
number of se-lf stages that the algorithm FR-Perceptron makes when running
on a Start-End separable sample.

Lemma 1 Let RSE = max1≤i≤m, 1≤j≤ni
‖φw(xi

j , x
i)‖ of a training set {(xi, yi)}m

i=1

satisfying Definition 2 with margin γ. Then the number of se-lf stages of FR-
Perceptron is at most

2R2
SE

γ2
.

Proof. It follows immediately from Novikoff’s proof Novikoff [1962] for the stan-
dard Perceptron algorithm. 2

Now, to conclude the convergence of the algorithm FR-Perceptron we must
demonstrate that after a se-lf stage there is room only for a finite number of
consecutive score-lf stages before a point where, no more changes of any kind
are necessary or a new se-lf stage is required. We consider two cases. First,
we assume that in the last se-lf stage the updated values of wS and wE are so
that for some 1≤ i≤m the solution yi does not belong to YSE(xi). In this case,
it is clear that if {wS,wE} have not been yet modified when FR-Perceptron
visits the example (xi, yi), a change on {wS,wE} of type A (see Figure 4.2) will
be made when the algorithm visits such example. So, we have the following
lemma.

Lemma 2 Assume that for some i, 1 ≤ i ≤ m, the search space YSE(xi) does
not include the solution yi. At this point at most m − 1 consecutive score-lf

stages are possible.

Second, we consider the case where the last se-lf stage has updated values
for {wS,wE} such that for all i, 1 ≤ i ≤ m it is yi ∈ YSE(xi). Let w0 be the
value of w when this se-lf stage is completed. Here we are in the hypothesis of
Theorem 2 and therefore, after at most R2/δ2 + 2‖w0‖/δ consecutive score-

lf stages the algorithm reaches to a point where no more learning feedbacks
are necessary or a new se-lf stage appears (generated by a type-B change, see
Figure 4.2).

Lemma 3 Assume that for all i, 1≤ i≤m, the search space YSE(xi) contains
the solution yi. At this point at most R2/δ2 + 2‖w0‖/δ consecutive score-lf

stages are possible.

Summarizing, from Lemmas 1, 2 and 3 we conclude the next theorem that
shows the convergence of FR-Perceptron.

151

Theorem 3 For any training set S = {(xi, yi)}m
i=1 separable with margin δ > 0

and Start-End separable with margin γ > 0, it holds:

1. The number of learning feedbacks that affect to the start-end vectors (se-lf
stages) is bounded by 2R2

SE/γ2.

2. After a learning feedback stage l that has affected the start-end vectors
(se-lf stage) there are at most

max

(

m − 1,
R2

δ2
+

2‖wl
0‖

δ

)

consecutive learning feedbacks that only affects to the score vectors (score-

lf stages). Here, wl
0 is the vector w when the updates corresponding to

stage l have been just made.

3. As a consequence of the previous two points, the FR-Perceptron algorithm
makes a finite number of errors on the training set. When no more errors
occur the total number of errors committed by the algorithm is bounded by

2R2
SE

γ2

(

1 + max

(

m − 1,
R2

δ2
+

2MAX

δ

))

,

where MAX is the maximum of the values ‖wl
0‖ at any se-lf stage.

152 Proof for FR-Perceptron

Appendix B

Author’s Publications

Following, we list the author’s publications that are related to the topics of this
thesis. Most of the papers are directly related to the work presented in this
thesis. Others are related to machine learning and natural language processing.
All papers can be downloaded from the following URL:

http://www.lsi.upc.edu/∼carreras/publications.html

Journals

• Xavier Carreras, Llúıs Màrquez and Jorge Castro. “Filtering-Ranking
Perceptron Learning for Partial Parsing”. Machine Learning, Special Issue
on Learning in Speech and Language Technologies, 59:1-31 , 2005.

• Enrique Romero, Llúıs Màrquez and Xavier Carreras. “Margin maximiza-
tion with feed-forward neural networks: a comparative study with SVM
and AdaBoost”. Neurocomputing, 57(C):313-344, 2004.

• Montse Arévalo, Xavier Carreras, Llúıs Màrquez, Toni Mart́ı, Llúıs Padró
and Maria José Simon. “A Proposal for Wide-Coverage Spanish Named
Entity Recognition”. Procesamiento del Lenguaje Natural, Revista de la
SEPLN. Vol. 28. May 2002.

Conference Papers

• Xavier Carreras and Llúıs Màrquez. “Introduction to the CoNLL-2005
Shared Task: Semantic Role Labeling”. In Proceedings of the 9th Confer-
ence on Computational Natural Language Learning (CoNLL-2005). Ann
Arbor, MI USA. June 2005.

• Enrique Romero, Xavier Carreras and Llúıs Màrquez. “Exploiting Diver-
sity of Margin-based Classifiers”. In Proceedings of the 2004 International
Joint Conference on Neural Networks (IJCNN). Budapest, Hungary, July
2004.

154 Author’s Publications

• Xavier Carreras and Llúıs Màrquez. “Introduction to the CoNLL-2004
Shared Task: Semantic Role Labeling”. In Proceedings of the 8th Confer-
ence on Computational Natural Language Learning (CoNLL-2004). Boston,
MA USA. May 2004.

• Xavier Carreras, Llúıs Màrquez and Grzegorz Chrupa la. “Hierarchical
Recognition of Propositional Arguments with Perceptrons”. In Proceed-
ings of the 8th Conference on Computational Natural Language Learning
(CoNLL-2004). Shared Task Contribution. Boston, MA USA. May 2004.

• Xavier Carreras and Llúıs Màrquez. “Online Learning via Global Feed-
back for Phrase Recognition”. In Advances in Neural Information Pro-
cessing Systems 16 (NIPS-2003). Vancouver, Canada. December 2003.

• Xavier Carreras and Llúıs Màrquez. “Phrase Recognition by Filtering and
Ranking with Perceptrons”. In Proceedings of the International Confer-
ence on Recent Advances in Natural Language Processing (RANLP-2003).
Borovets, Bulgaria. September 2003.

• Xavier Carreras, Llúıs Màrquez and Llúıs Padró. “A Simple Named Entity
Extractor Using AdaBoost”. In Proceedings of the Workshop on Compu-
tational Natural Language Learning (CoNLL-2003). Shared Task Contri-
bution. Edmonton, Canada. June 2003.

• Xavier Carreras, Llúıs Màrquez and Llúıs Padró. “Learning a Perceptron-
Based Named Entity Chunker via Online Recognition Feedback”. In Pro-
ceedings of the 7th Conference on Computational Natural Language Learn-
ing (CoNLL-2003). Shared Task Contribution. Edmonton, Canada. June
2003.

• Llúıs Màrquez, Adrià de Gispert, Xavier Carreras and Llúıs Padró. “Low-
cost Named Entity Classification for Catalan: Exploiting Multilingual Re-
sources and Unlabeled Data”. In Proceedings of the 1st ACL Workshop
on Multilingual and Mixed-language Named Entity Recognition: Combin-
ing Statistical and Symbolic Models (MulNER’03). Sapporo, Japan. July
2003.

• Xavier Carreras, Llúıs Màrquez and Llúıs Padró. “Named Entity Recog-
nition For Catalan Using Spanish Resources”. In Proceedings of the 10th
Conference of the European Chapter of the Association for Computational
Linguistics (EACL’03). Budapest, Hungary. April 2003.

• Xavier Carreras, Llúıs Màrquez and Llúıs Padró. “Wide-Coverage Span-
ish Named Entity Extraction” In Proceedings of the VIII Conferencia
Iberoamericana de Inteligencia Artificial (IBERAMIA’02). Sevilla, Spain.
November 2002.

155

• Xavier Carreras, Llúıs Màrquez and Llúıs Padró. “Named Entity Extrac-
tion using Adaboost”. CoNLL Shared Task Contribution. In Proceed-
ings of the 6th Workshop on Computational Natural Language Learning
(CoNLL-2002). Taipei, Taiwan. September 2002.

• Xavier Carreras, Llúıs Màrquez, Vasin Punyakanok and Dan Roth. “Learn-
ing and Inference for Clause Identification” In Proceedings of the 13th Eu-
ropean Conference on Machine Learning (ECML’02). Helsinki, Finland.
August 2002.

• Xavier Carreras and Llúıs Màrquez. “Boosting Trees for Clause Splitting”
CoNLL Shared Task Contribution. In Proceedings of the 6th Workshop
on Computational Natural Language Learning (CoNLL-2001). Toulouse,
France. July 2001.

• Xavier Carreras and Llúıs Màrquez. “Boosting Trees for Anti-Spam Email
Filtering” In Proceedings of the RANLP-2001: Recent Advances in NLP.
September, 2001.

