Universitat Politecnica de Catalunya
Ph.D. Program on Artificial Intelligence
Learning and Inference in Phrase Recognition:

A Filtering-Ranking Architecture using Perceptron

Ph.D. Dissertation by
Xavier Carreras Pérez

advised by
Lluis Marquez Villodre



Introduction

Outline

e Introduction: Phrase Recognition

e Learning Methods for Text Analysis Tasks

e Filtering-Ranking Architecture

e Systems and Results on Syntactic-Semantic Parsing

e Conclusion and Future Research



Introduction

Natural Language Learning for Text Analysis

e NLL: Learning as a central mechanism to process natural language

e Text Analysis: a fundamental task in NLP

* Consists of recognizing the linguistic structures underlying text
* Useful for applications dealing with language:

> Intelligent Information Access (e.g., Question-Answering)

> Machine Translation Systems

> ..



Introduction

Phrase Recognition

e A family of text analysis tasks

e What is a phrase, in general?
a group of words performing a function as a unit

e Many problems in Natural Language consist of recognizing
phrases in a sentence

e a.k.a. segmentation problems, tagging and parsing problems



Introduction

Syntactic Parsing

e Phrase = constituent : a group of words performing a syntactic
function

e Several levels/versions of the problem:

* Full Parsing: recover the full syntactic tree

* Partial Parsing: recover only some syntactic elements:
> Chunking: recognize chunks, i.e., base non-recursive phrases
> Noun-Phrase recogniton: recognize the structure of NPs
> Clause ldentification: recover the clauses (usually in hierarchy)
> ...
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Phrase Recognition in Partial Syntactic Analysis
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Introduction

Phrase Recognition in Partial Syntactic Analysis




Introduction

Semantic Role Labeling

e Phrase = Argument : a group of syntactic units playing a role
with a predicate

e Example:
(The cat)aq trapped (the rat)pac (with a hat)ing

* For the predicate “trap”:

> AG is the agent (the entity that traps)
> PAC is the pacient (the thing trapped)
> INS is the instrument



Introduction

Phrase Recognition in Syntactic-Semantic Analysis
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Introduction

Phrase Recognition: general

e Goal: find phrases in a sentence, of types in K

e Solution: a set of phrases, each of the form (s, e), satisfying that:

* Phrases do not overlap (do not cross boundaries)
* Sequential Structures: phrases do not embed
* Hierarchical Structures: phrases may be embedded

e Evaluation: Precision/Recall /F; of recognized phrases



Introduction

Sequential Phrase Structure:
schematic view
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Introduction

Hierarchical Phrase Structure:
schematic view

(0 (@ (0 o o0))o)o o (06((6 o o o)(0 o (o 0))))



Introduction

Observations (i): Huge Output Space
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Output space is exponential: parsing strategy required



Introduction

Observations (ii): Recursive Structures

Desirable to put learning in high-order level



Introduction

This Thesis

e Proposes a general learning architecture for phrase recognition

e Presents state-of-the-art systems for several NL problems:

* Syntactic Chunking
* Clause ldentification
* Semantic Role Labeling
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Learning Methods for Text Analysis Tasks

Supervised Machine Learning

e Given:

~ A training set, with examples (z,y) where
> x € X could be sentences
> y € Y could be linguistic structures
> We assume that the set was generated i.i.d. from an unknown

distribution D over X x Y
* An error function, or loss :

error(y, y) = cost of proposing ¢ when the correct value was y

e Goal: learn a hypothesis

h: X —)

that minimizes error on the entire distribution D



Learning Methods for Text Analysis Tasks

Scenarios in Machine Learning

A general form of learning hypothesis:

h(xz) = arg max score(z, 3)
gey

Depending on the output space ):

Classes () V| enumeration | error
of V

Bmar.y. _ {+,-} 1 not needed 0-1
Classification
Multl.c.lass. ABC, ... m exhaustive 0-1
Classification
Struc?ure all exponential not prec/rec
Learning structures tractable on nodes



Learning Methods for Text Analysis Tasks

Structure Learning: Learning & Inference

e Y(x) is exponential on the size of x
e Not possible to exhaustively enumerate the output space

e Learning & Inference approach:

* Key |ldea: decompose a structure into fragments

* Model: scores a structure by scoring its fragments

* Inference: search in Y(x) for the best scored solution for x
> Build incrementally, instead of explore exhaustively
> Use automata, grammars, . . . to build the solution
> Use constraints to discard regions of Y(x)



Learning Methods for Text Analysis Tasks

Generative Learning (i): Models

e Probabilistic models that define a joint probability distribution of
the data

e The model is associated to a stochastic generation mechanism of
the data, such as an automaton or grammar

e Paradigmatic models to recognize structure:

* Hidden Markov Models, e.g. [Rabiner 89]
* Probabilistic Context-Free Grammars, e.g. [Collins 99]



Learning Methods for Text Analysis Tasks

Generative Learning (ii): Max-Likelihood Estimation

e Based on theory of probability and Bayesian learning:

* Training: via Maximum Likelihood, i.e., counts on training
* Inference Algorithms: e.g., Viterbi, CKY, etc.

e But:

* Difficult to use arbitrary representations
> Features are tied to the generation mechanism of the data
> Otherwise, the training process becomes too complex

* Asymptotic convergence wrt. the size of training data



Learning Methods for Text Analysis Tasks

Direct, Discriminative Learning

e ML methods that directly model the mapping between X and )Y
e Allow arbitrary representations

e Not necessarily probabilistic

e Mostly designed for classification, mostly binary

e A wide range of methods appeared in the Al community during
the 80's and 90’s:

* Maximum Entropy * Neural Nets, Perceptron
x Decision Trees (or Lists) + AdaBoost
* Memory-based * Support Vector Machines

* Transformation-based * ...



Learning Methods for Text Analysis Tasks

Learning and Inference: General Approach

e Transform the recognition problem into a chain of simple
decisions:

* Segmentation Decisions:

e.g., Open-Close, Begin-Inside-Outside, Shift-Reduce, etc.
* Labeling Decisions: made during segmentation or afterwards
* Decisions might use the output of earlier steps in the chain

e Set up an inference strategy:

* Decisions are applied in chain to build structure incrementally
* Exploration might be at different levels of amplitude:
e.g., greedy, dynamic programming, beam search, etc.

e Learn a prediction function for each decision



Learning Methods for Text Analysis Tasks

Learning & Inference: Local vs. Global Training

e Local training: each local function is trained separately, as a
classifier (binary or multiclass)

* Good understanding on learning classifiers
* but local accuracies do not guarantee global accuracy
* that s, a local classification behavior might not be the optimal

within inference
* unless local classifications are perfect

e Global training: train the recognizer as a composed function

* Local functions are trained dependently to optimize global

accuracy
* e.g., Linear models [Collins 02,04], CRFs [Lafferty et al. 01]



Learning Methods for Text Analysis Tasks

Learning Linear Separators (i)

e Most learning algorithms look for linear separators,
under different criteria [Roth 98,99][Collins 02]

e Properties: simple, expressive, efficient
e Flexible at learning different prediction policies
e A linear separator has the following form:
score(x,y) = W - ¢(x,y)
where:

* @ 1s a feature extraction function, given a priori
* W is a weight vector, learned by the algorithm



Learning Methods for Text Analysis Tasks

Learning Linear Separators (ii): Separability

e Recent theoretical work concentrates on learning linear separators

e Separability: ability to separate between correct/incorrect
Instances

e [Vapnik 95]:

* large separation on training = low generalization error

* A quantity called margin measures how much a hypothesis
separates between correct/incorrect instances

* Margin-based algorithms: look for linear separators that . . .
> Perceptron: achieve positive margins
> Support Vector Machines: achieve maximum margins



Learning Methods for Text Analysis Tasks

Learning Linear Separators (iii): Perceptron

e Online algorithm, with additive mistake-driven updates:

» Promotion, when a prediction is too low (controls recall)
x» Demotion, when a prediction is too high (controls precision)

e With appropiate definitions of margin, can be used for:

* binary classifiers [Rosenblatt 58]
* multiclass [Crammer & Singer 03]
* ranking functions [Collins 02]

e Extensions: Voted Perceptron [Freund & Schapire 99]

* Voting techniques to obtain larger margins
* Kernel method: polynomial functions, structure kernels, . . .
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Filtering-Ranking Architecture

Filtering-Ranking Architecture

e A general architecture to recognize phrase structures

e Two levels of learning:
~ Filter: decides which words start/end a phrase

* Ranker: scores phrases

e On the top, dynamic programming inference builds the
best-scored phrase structure

e \We propose FR-Perceptron: a Perceptron learning algorithm
tailored for the architecture



Filtering-Ranking Architecture

Filtering-Ranking Architecture: Decomposition

e A solution is decomposed at phrase level:

score(x,y) = Z scorep (T, ¥, (S, €)k)
(s,e)kEy

e Still, the number of phrases grows quadratically with the sentence
length

e We reduce the space of phrases by filtering at word level.
For a phrase (s, e); to be in a solution:

startyw(z,s,k) >0 A endy(z,e, k) >0



Filtering-Ranking Architecture

Filtering-Ranking Model

Y: solution space, i.e. set of all phrase structures

Ysg: practical solution space, filtered at word level:

ySE — {yey | V(S,G)key Startw(xvsak) /\endw(a:,e,k)}

The Filtering-Ranking architecture computes:

R(z) = arg max Z scorep (2, ¥, (S, €)k)
yEySE (Sae)key

using dynamic-programming.
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Filtering-Ranking Strategy
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Filtering-Ranking Strategy
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Filtering-Ranking Architecture

Filtering-Ranking Strategy
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Filtering-Ranking Strategy
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Filtering-Ranking Architecture

Learning a Filtering-Ranking Model

e Goal: Learn the functions (starty,, endy, score,) so as to
maximize the F; measure on the recognition of phrases

e Desired behavior:

* Start-End Filters:
> Do not block any correct phrase: very high recall
> Block phrases that produce errors at the ranking stage
> Block much incorrect phrases as possible
* Ranker:
> Separate between correct/incorrect structures
> Forget about filtered phrases



Filtering-Ranking Architecture

Perceptron Learning at Global Level

e Following [Collins 02], we guide learning at global level:

* Do not concentrate on individual errors of the learning functions
* Instead, concentrate on errors at sentence level, after inference

e Key points:

* Mistake-driven learning, a.k.a. Perceptron

* Functions are learned together, visiting online training sentences

* Errors are propagated from sentence-level, to phrase-level, to
word-level



Filtering-Ranking Architecture

Filtering-Ranking Perceptron

e Configuration:

» Feature extraction functions (given): ¢y, ¢,
» Weight vectors (learned): wg, wg, wp,

e Algorithm: visit online sentence-structure pairs (x,y):

1. Infer the best phrase structure ¢ for x

2. ldentify errors and provide feedback to weight vectors.
We consider only errors at global level, comparing y and y:
x Missed Phrases (those in 4 \ 3)
x Over-predicted Phrases (those in ¢ \ y)



Filtering-Ranking Architecture

FR-Perceptron:
Feedback on Missed phrases

If a phrase (s, e)x is missed, do promotion updates:

e if word s is not positive start for k:
Ws = Wg + ¢y (x, s, k)

e if word e is not positive end for k:
Wg = Wg + ¢w(x, e, k)

o if (s,e)r passes the filter (s/e are positive start/end for k):
W, = Wy + &p(, Y, (S, €)k)



Filtering-Ranking Architecture

FR-Perceptron:
Feedback on Over-Predicted phrases

If a phrase (s, e)x is over-predicted, do demotion updates:

e Give feedback to the ranker:

Wy, = Wy, — @p(T, Y, (S, €)k)

e If word s is not a correct start for k:
Wg — Wg — ¢W(QZ, S, k)

e If word e iIs not a correct end for k:
WgE = WEg — Q5W(£E, €, k‘)



Filtering-Ranking Architecture

Learning Feedback: Example

e Local predictions are corrected wrt. the global solution
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Filtering-Ranking Architecture

Learning Feedback: Example

e Local predictions are corrected wrt. the global solution
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Filtering-Ranking Architecture

Learning Feedback: Example

e Local predictions are corrected wrt. the global solution
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Filtering-Ranking Architecture

Learning Feedback: Example

e Local predictions are corrected wrt. the global solution
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Filtering-Ranking Architecture

Learning Feedback: Example

e Local predictions are corrected wrt. the global solution
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Filtering-Ranking Architecture

Learning Feedback: Example

e Local predictions are corrected wrt. the global solution

O Correct

|:| Over-predicted

A Missed

e Local predictions that do not hurt globally are not penalized



Filtering-Ranking Architecture

Empirical validation of FR-Perceptron

e We perform a number of experiments to validate the behavior of

FR-Perceptron

e Problem: Clause Identification, following CoNLL-2001 Shared
Task:

* One type of phrases: clauses

* Hierarchical Structure
* Training: ~ 9,000 sentences, ~ 25,000 clauses
* Test: ~ 1,700 sentences, ~ 4,900 clauses



Filtering-Ranking Architecture

Empirical validation of FR-Perceptron

We compare four training strategies for the Filtering-Ranking model:

type | w’s trained | R on F | penalty wrt.
local-VP VP | separatedly no binary sign
local-SVM SVM | separatedly no binary sign
global-VP VP together yes binary sign
FR-Perceptron | VP together yes arg max




Filtering-Ranking Architecture

Empirical validation of FR-Perceptron
Overall Results
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e Global training strategies perform better than local strategies

e Feedback after inference trains more effectively the recognizer



Filtering-Ranking Architecture

Empirical validation of FR-Perceptron
Behavior of the Start-End Filter

We look at the performance of Start-End functions:

e Precision/Recall of Start-End
e How much the phrase space is reduced?

e What is the maximum achievable F; after the Filter?
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Empirical validation of FR-Perceptron
Recall /Precision on Start words
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e FR-Perceptron favors recall, others favor precision

e On End words, the same behavior is observed
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Experiments on Clause ldentification
Upper Bound F;/Explored Phrases
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e FR-Perceptron maintains a high upper-bound F; for the ranking
layer (left), and reduces the space of explored phrases (right)

e Other methods are not sensitive to F-R interactions



Filtering-Ranking Architecture

Empirical validation of FR-Perceptron
Does the Filter help in performance?

e We train the architecture without the Filter (UB-F; = 100%):
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e Filtering favors not only efficiency, but also global accuracy
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Systems and Results on Syntactic-Semantic Parsing

Phrase Recognition in Syntactic-Semantic Analysis

e We apply the Filtering-Ranking architecture to three NLP
recognition tasks

e We follow the CoNLL Shared Task settings

edition nature || structure

NP Chunking 2000 syn. 1 sequential
Syntactic Chunking 2000 syn. 11 sequential
Clause ldentification 2001 syn. 1 hierarchical

Semantic Role Labeling 2004  syn./sem. 20 seq./hier.




Systems and Results on Syntactic-Semantic Parsing

General Details about the Systems

e Averaged predictions: better convergence, better accuracy

e Feature Extraction functions:

* Oy . window-based representations
*x @p, : patterns of the phrase candidate
* Both make use of predictions on the explored space:
> Inference might lead to a sub-optimal, but accuracy is better

e Polynomial kernels of degree two:

* Much better than default linear predictions
* No improvement with higher degrees



Systems and Results on Syntactic-Semantic Parsing

Application to Syntactic Chunking

e Sequential structures:

* Chunks do not overlap
* Chunks do not admit embedding

e Inference: Viterbi-like dynamic programming

e Following the CoNLL-2000 Shared Task. Trained for:

* NP-Chunking: a single type of chunk, i.e. NP
x Syntactic Chunking: eleven types of chunks (NP,VP,PP,. .. )

e Many systems are evaluated on this benchmark data.
All of them approach the problem as a tagging task.



Systems and Results on Syntactic-Semantic Parsing

Syntactic Chunking - Results

Reference Technique Precision Recall Fi
Zhang 05] SVD-ASO 94.57 94.20 94.39
Zhang 02] Winnow 0428  94.07 94.17
[Kudo & Matsumoto 01] SVM voting 93.89 93.92 93.91
[Kudo & Matsumoto 01] SVM single 93.95 93.75 93.85
> FRP-Chunker FR-Perceptron 94.20 93.38 93.79
[Zhang 05] SVD 93.83 93.37 93.60
[Zhang 02] Winnow 93.54 93.60 93.57
[Kudo & Matsumoto 00] SVM 93.45 93.561 93.48
'van Halteren 00] MBL&WPD 93.13 03.51 93.32
[ Tjong Kim Sang 00] MBL voting 94.04 91.00 92.50

. . . + 8 shared task sytems more




Systems and Results on Syntactic-Semantic Parsing

NP Chunking - Results

Reference scope Technique Prec. Rec. Fi
Zhang 05] all SVD-ASO unav. unav. 94.70
> FRP-Chunker all FR-Perc. 94.55 94.37 94.46
Kudo & Matsumoto 01] all SVM voting 94.47 9432 94.39
Zhang 02] all Winnow 94.39 9437 94.38
Sha & Pereira 03] NP  CRF unav. unav. 94.38
> FRP-Chunker NP FR-Perc. 94.69 93.98 94.33
Kudo & Matsumoto 01] all SVM single 9454 94.09 94.32
Sha & Pereira 03] NP MM-VP unav. unav. 94.09
Zhang 02] all Winnow 93.80 93.99 93.89
NP MM-VP unav. unav. 93.53

Collins 02]




Systems and Results on Syntactic-Semantic Parsing

Application to Clause Identification

e A single type of phrases: clauses
e Clauses form hiearchical structures in a sentence

e Inference: CKY-like dynamic programming

e Following the CoNLL-2001 Shared Task



Systems and Results on Syntactic-Semantic Parsing

Clause Identification - Results

Reference Technique Precision Recall Fi
> FR-Clauser FR-Perceptron 88.17 82.10 85.03
Carreras et al. 02] AdaBoost class. 90.18 78.11 83.71
Carreras & Marquez 01] AdaBoost class. 84.82 78.85 81.73
Molina & Pla 01] HMM 70.85 70.51  70.68
Tjong Kim Sang 01] Memory-based 76.91 65.22  70.58
Patrick & Goyal 01] AdaBoost 73.75 64.56 68.85
Dejean 01] Theory Ref. 72.56 58.69  64.89
[Hammerton 01] LSTM-NNet 55.81 49.49  52.46




Systems and Results on Syntactic-Semantic Parsing

Application to Semantic Role Labeling

e We follow the CoNLL-2004 Shared Task:
puts SRL after partial parsing analysis (chunks and clauses)

e The SRL strategy looks for a hierarchy of arguments in a
sentence, where:

* Arguments are formed by joining elements found within clauses:

words, chunks and inner clauses
* An argument is related to number of verbs. These relations are

labelled with semantic roles

e Other systems in literature approach the problem as a chunking
task, recognizing arguments of different predicates independently
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Semantic Role Labeling - Results

Reference Technique Precision Recall Fi
'Hacioglu et al. 04] SVM 72.43 66.77  69.49
[Punyakanok et al. 04] Winnow 70.07 63.07  66.39
> FR-SRLabeler FR-Perceptron 71.81 61.11 66.03
Lim et al. 04] Max-Entropy 68.42 61.47 64.76
Park et al. 04] SVM 65.63 62.43  63.99
Higgins 04] TBL 64.17 57.52  60.66
'van den Bosch et al. 04] Memory-Based 67.12 54.46  60.13
[Kouchnir 04] Memory-Based 56.86 4995 53.18
Baldewein et al. 04] Max-Entropy 65.73 42.60 51.70
Williams et. al 04] TBL 58.08 34.75  43.48
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Conclusion and Future Research

Main Contributions (i):
A Framework for Phrase Recognition

e \We have studied the problem of recognizing phrase structures in a
sentence.

* Many problems in NLP analysis can be casted as phrase
recognition tasks

e We have discussed architectures based on learning and inference:

* Models based on decompositions at word and phrase level
* Incremental inference procedures
* Learning algorithms at local and global contexts



Conclusion and Future Research

Main Contributions (ii):
Filtering-Ranking Perceptron

e A novel architecture for general phrase recognition:

* Puts learning at phrase level
* Uses filtering to reduce the solution space

e FR-Perceptron:

* Global online learning, with ultra-conservative feedback

* Experiments show that FR-Perceptron trains the functions of
the architecture as word filters and phrase rankers

* Analysis of convergence (see thesis)



Conclusion and Future Research

Main Contributions (iii):
Systems for Syntactic-Semantic analysis

e The Filtering-Ranking architecture is general and flexible

e We have developed Filtering-Ranking systems for three CoNLL
Shared Tasks

e In all cases, we obtain results among the top in the state-of-the-art

e On Clause ldentification, our system obtains the best results
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Future Lines (i)

e From Greedy to Exact Inference in Global Learned Models

* We would like to test the influence of different inference
strategies, in models that exploit increasing levels of
dependencies

e Learning Issues for FR-Perceptron
* Gain theoretical understanding on the filtering-ranking
Interactions

e On Natural Language Tasks

* Joint analysis of several layers: e.g., PoS tagging + Chunking
* Increasing levels of syntax, from shallow, to partial, to full



Conclusion and Future Research

Future Lines (ii)

e Introducing Knowledge

* Learn on the top of a grammar-based exploration

e On Representations and Kernels

* Look for more efficient kernel-based representations
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Selected Publications (i): Learning Architectures

e Xavier Carreras, Lluis Marquez and Jorge Castro

“Filtering-Ranking Perceptron Learning for Partial Parsing”
Machine Learning. 2005.

e Xavier Carreras and Lluis Marquez
“Online Learning via Global Feedback for Phrase Recognition”
In Proceedings of NIP5-2003. Vancouver, Canada. 2003.

e Xavier Carreras, Lluis Marquez, Vasin Punyakanok and Dan Roth
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In Proceedings of ECML-2002. Helsinki, Finland. 2002.
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Selected Publications (ii): Shared Task Systems

e Xavier Carreras, Lluis Marquez and Grzegorz Chrupata

“Hierarchical Recognition of Propositional Arguments with Perceptrons”,
CoNLL-2004

e Xavier Carreras, Lluis Marquez and Lluis Padré
“A Simple Named Entity Extractor Using AdaBoost”, CoNLL-2003

e Xavier Carreras, Lluis Marquez and Lluis Padré

“Learning a Perceptron-Based Named Entity Chunker via Online Recognition
Feedback”, CoNLL-2003
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“Named Entity Extraction using Adaboost”, CoNLL-2002
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e Xavier Carreras and Lluis Marquez

“Introduction to the CoNLL-2005 Shared Task: Semantic Role Labeling”
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