

Universitat Politècnica de Catalunya Ph.D. Program on Artificial Intelligence

Learning and Inference in Phrase Recognition: A Filtering-Ranking Architecture using Perceptron

Ph.D. Dissertation by Xavier Carreras Pérez

advised by Lluís Màrquez Villodre

Outline

- Introduction: Phrase Recognition
- Learning Methods for Text Analysis Tasks
- Filtering-Ranking Architecture
- Systems and Results on Syntactic-Semantic Parsing
- Conclusion and Future Research

Natural Language Learning for Text Analysis

- NLL: Learning as a central mechanism to process natural language
- Text Analysis: a fundamental task in NLP
 - ★ Consists of recognizing the linguistic structures underlying text
 - ★ Useful for applications dealing with language:
 - Intelligent Information Access (e.g., Question-Answering)
 - Machine Translation Systems
 - ▷...

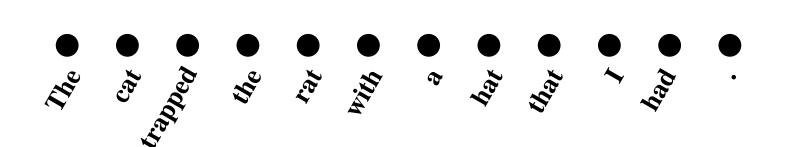
Phrase Recognition

- A family of text analysis tasks
- What is a phrase, in general?
 a group of words performing a function as a unit
- Many problems in Natural Language consist of recognizing phrases in a sentence
- *a.k.a.* segmentation problems, tagging and parsing problems

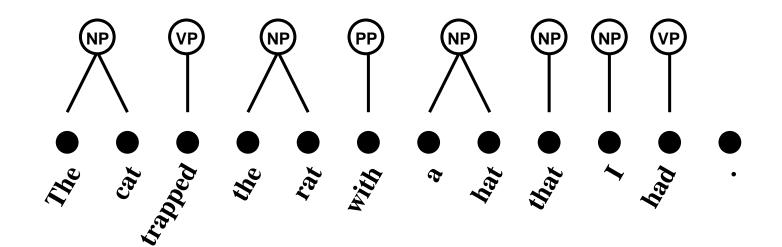
Syntactic Parsing

- Phrase = constituent : a group of words performing a syntactic function
- Several levels/versions of the problem:
 - ★ Full Parsing: recover the full syntactic tree
 - ★ Partial Parsing: recover only some syntactic elements:
 ▶ Chunking: recognize chunks, i.e., base non-recursive phrases
 ▶ Noun-Phrase recogniton: recognize the structure of NPs
 ▶ Clause Identification: recover the clauses (usually in hierarchy)
 ▶

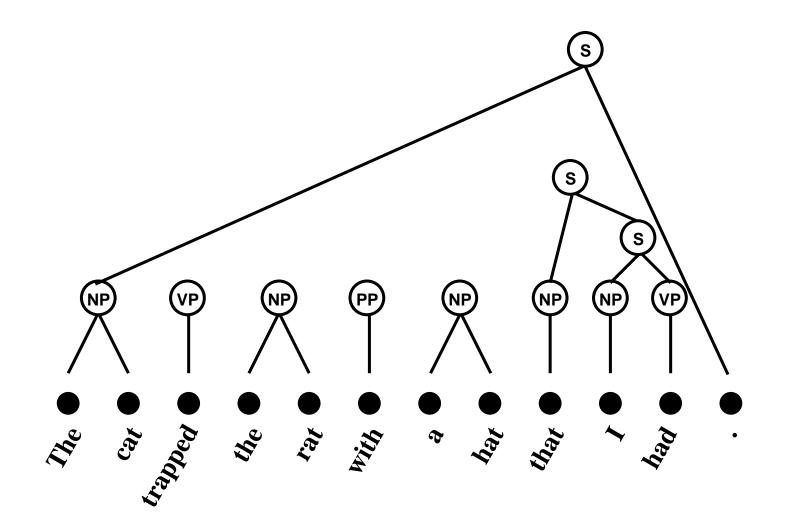
Phrase Recognition in Partial Syntactic Analysis



Phrase Recognition in Partial Syntactic Analysis



Phrase Recognition in Partial Syntactic Analysis



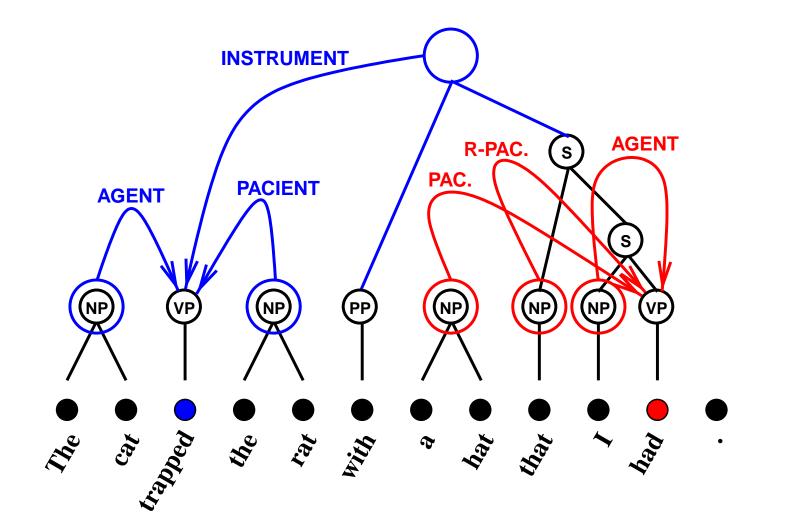
Semantic Role Labeling

- Phrase = Argument : a group of syntactic units playing a role with a predicate
- Example:

(The cat) $_{\rm AG}$ trapped (the rat) $_{\rm PAC}$ (with a hat) $_{\rm INS}$

- ★ For the predicate "trap":
 - ▶ AG is the agent (the entity that traps)
 - ▷ PAC is the pacient (the thing trapped)
 - ▷ INS is the instrument

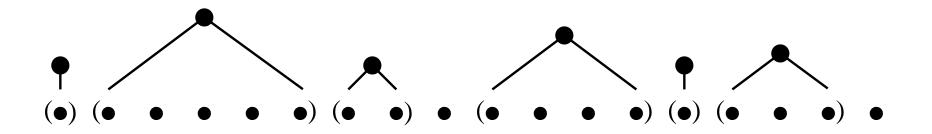
Phrase Recognition in Syntactic-Semantic Analysis



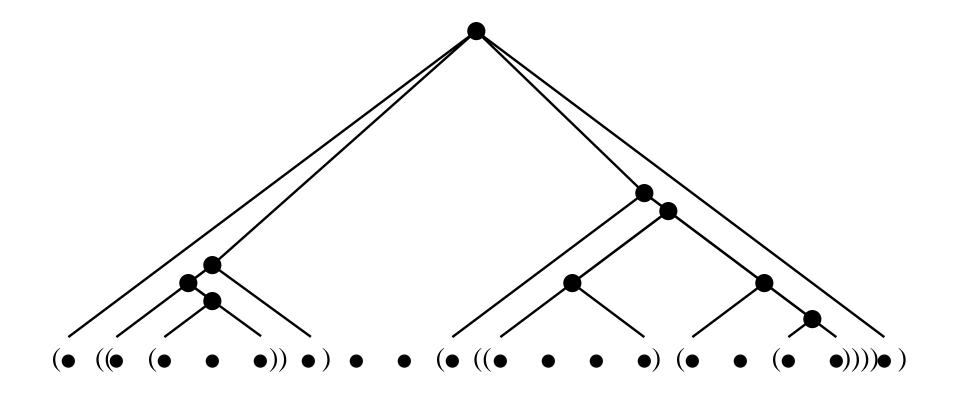
Phrase Recognition: general

- Goal: find phrases in a sentence, of types in ${\cal K}$
- Solution: a set of phrases, each of the form $(s, e)_k$, satisfying that:
 - ★ Phrases do not overlap (do not cross boundaries)
 - ★ Sequential Structures: phrases do not embed
 - ★ Hierarchical Structures: phrases may be embedded
- Evaluation: Precision/Recall/F₁ of recognized phrases

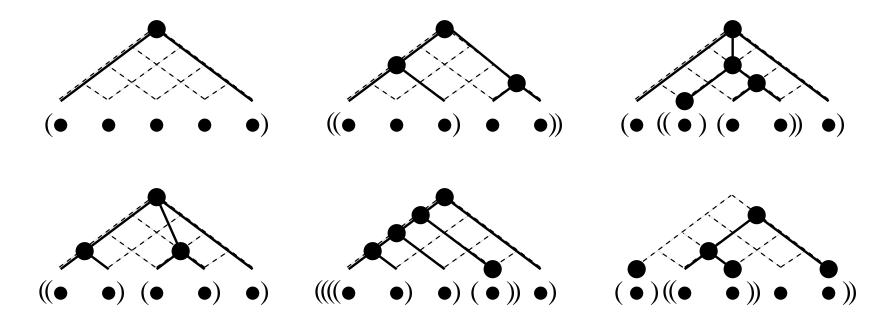
Sequential Phrase Structure: schematic view



Hierarchical Phrase Structure: schematic view

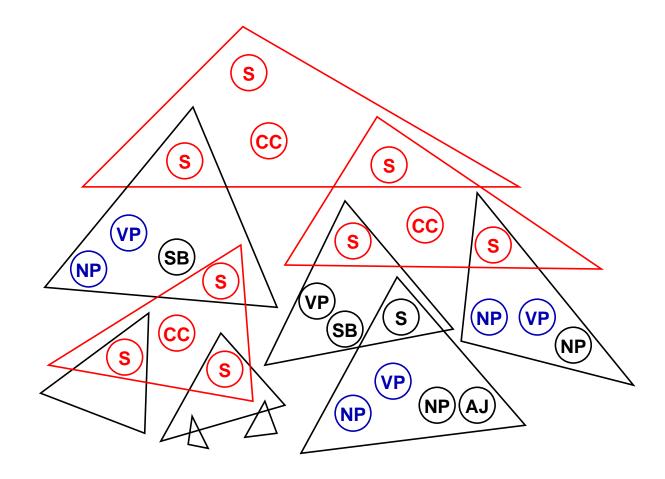


Observations (i): Huge Output Space



Output space is exponential: parsing strategy required

Observations (ii): Recursive Structures



Desirable to put learning in high-order level

This Thesis

- Proposes a general learning architecture for phrase recognition
- Presents state-of-the-art systems for several NL problems:
 - ★ Syntactic Chunking
 - ★ Clause Identification
 - ★ Semantic Role Labeling

Outline

- Introduction: Phrase Recognition
- Learning Methods for Text Analysis Tasks
- Filtering-Ranking Architecture
- Systems and Results on Syntactic-Semantic Parsing
- Conclusion and Future Research

Supervised Machine Learning

- Given:
 - \star A training set, with examples (x,y) where
 - $\triangleright \ x \in \mathcal{X}$ could be sentences
 - $\triangleright y \in \mathcal{Y}$ could be linguistic structures
 - ▷ We assume that the set was generated i.i.d. from an unknown distribution D over X × Y
 - ★ An error function, or loss : $\operatorname{error}(y, \hat{y}) = \operatorname{cost} of \operatorname{proposing} \hat{y}$ when the correct value was y
- Goal: learn a hypothesis

$$\mathrm{h}:\mathcal{X} \to \mathcal{Y}$$

that minimizes error on the entire distribution $\ensuremath{\mathcal{D}}$

Scenarios in Machine Learning

A general form of learning hypothesis:

$$h(x) = \underset{\hat{y} \in \mathcal{Y}}{\operatorname{arg\,max}} \operatorname{score}(x, \hat{y})$$

Depending on the output space \mathcal{Y} :

	Classes (\mathcal{Y})	$ \mathcal{Y} $	enumeration of ${\mathcal Y}$	error
Binary Classification	$\{+,-\}$	1	not needed	0-1
Multiclass Classification	A,B,C,	m	exhaustive	0-1
Structure Learning	all structures	exponential	not tractable	prec/rec on nodes

Structure Learning: Learning & Inference

- $\mathcal{Y}(x)$ is exponential on the size of x
- Not possible to exhaustively enumerate the output space
- Learning & Inference approach:
 - ***** Key Idea: decompose a structure into fragments
 - ★ Model: scores a structure by scoring its fragments
 - \star Inference: search in $\mathcal{Y}(x)$ for the best scored solution for x
 - Build incrementally, instead of explore exhaustively
 - Use automata, grammars, . . . to build the solution
 - \triangleright Use constraints to discard regions of $\mathcal{Y}(x)$

Generative Learning (i): Models

- Probabilistic models that define a joint probability distribution of the data
- The model is associated to a stochastic generation mechanism of the data, such as an automaton or grammar
- Paradigmatic models to recognize structure:
 - ★ Hidden Markov Models, e.g. [Rabiner 89]
 - ★ Probabilistic Context-Free Grammars, e.g. [Collins 99]

Generative Learning (ii): Max-Likelihood Estimation

- Based on theory of probability and Bayesian learning:
 - ★ Training: via Maximum Likelihood, i.e., counts on training
 - ★ Inference Algorithms: e.g., Viterbi, CKY, etc.
- But:
 - ★ Difficult to use arbitrary representations
 - Features are tied to the generation mechanism of the data
 - Otherwise, the training process becomes too complex
 - ★ Asymptotic convergence wrt. the size of training data

Direct, Discriminative Learning

- \bullet ML methods that directly model the mapping between ${\cal X}$ and ${\cal Y}$
- Allow arbitrary representations
- Not necessarily probabilistic
- Mostly designed for classification, mostly binary
- A wide range of methods appeared in the AI community during the 80's and 90's:
 - ★ Maximum Entropy ★ Neural Nets, Perceptron

*

- ★ Decision Trees (or Lists) ★ AdaBoost
- ★ Memory-based

- ★ Support Vector Machines
- ★ Transformation-based

Learning and Inference: General Approach

- Transform the recognition problem into a chain of *simple* decisions:
 - ★ Segmentation Decisions:
 - e.g., Open-Close, Begin-Inside-Outside, Shift-Reduce, etc.
 - ★ Labeling Decisions: made during segmentation or afterwards
 - ★ Decisions might use the output of earlier steps in the chain
- Set up an inference strategy:
 - * Decisions are applied in chain to build structure incrementally
 - ★ Exploration might be at different levels of amplitude:
 - e.g., greedy, dynamic programming, beam search, etc.
- Learn a prediction function for each decision

Learning & Inference: Local vs. Global Training

- Local training: each local function is trained separately, as a classifier (binary or multiclass)
 - ★ Good understanding on learning classifiers
 - \star but local accuracies do not guarantee global accuracy
 - ★ that is, a local classification behavior might not be the optimal within inference
 - ★ *unless* local classifications are perfect
- Global training: train the recognizer as a composed function
 - Local functions are trained dependently to optimize global accuracy
 - ★ e.g., Linear models [Collins 02,04], CRFs [Lafferty et al. 01]

Learning Linear Separators (i)

- Most learning algorithms look for linear separators, under different criteria [Roth 98,99][Collins 02]
- Properties: simple, expressive, efficient
- Flexible at learning different prediction policies
- A linear separator has the following form:

$$\operatorname{score}(x,y) = \mathbf{w} \cdot \phi(x,y)$$

where:

 $\star \phi$ is a feature extraction function, given *a priori* $\star \mathbf{w}$ is a weight vector, learned by the algorithm

Learning Linear Separators (ii): Separability

- Recent theoretical work concentrates on learning linear separators
- Separability: ability to separate between correct/incorrect instances
- [Vapnik 95]:
 - \star large separation on training \Longrightarrow low generalization error
 - A quantity called margin measures how much a hypothesis separates between correct/incorrect instances
 - ★ Margin-based algorithms: look for linear separators that . . .
 - Perceptron: achieve positive margins
 - Support Vector Machines: achieve maximum margins

Learning Linear Separators (iii): Perceptron

• Online algorithm, with additive mistake-driven updates:

- Promotion, when a prediction is too low (controls recall)
 Demotion, when a prediction is too high (controls precision)
- With appropiate definitions of margin, can be used for:
 - ★ binary classifiers [Rosenblatt 58]
 - ★ multiclass [Crammer & Singer 03]
 - ★ ranking functions [Collins 02]
- Extensions: Voted Perceptron [Freund & Schapire 99]
 - ★ Voting techniques to obtain larger margins
 - ★ Kernel method: polynomial functions, structure kernels, . . .

Outline

- Introduction: Phrase Recognition
- Learning Methods for Text Analysis Tasks
- Filtering-Ranking Architecture
- Systems and Results on Syntactic-Semantic Parsing
- Conclusion and Future Research

Filtering-Ranking Architecture

- A general architecture to recognize phrase structures
- Two levels of learning:
 - ★ Filter: decides which words start/end a phrase
 - ★ Ranker: scores phrases
- On the top, dynamic programming inference builds the best-scored phrase structure
- We propose FR-Perceptron: a Perceptron learning algorithm tailored for the architecture

Filtering-Ranking Architecture: Decomposition

• A solution is decomposed at phrase level:

$$\operatorname{score}(x, y) = \sum_{(s,e)_k \in y} \operatorname{score}_{p}(x, y, (s, e)_k)$$

- Still, the number of phrases grows quadratically with the sentence length
- We reduce the space of phrases by filtering at word level. For a phrase $(s, e)_k$ to be in a solution:

 $\operatorname{start}_{\mathbf{w}}(x, s, k) > 0 \land \operatorname{end}_{\mathbf{w}}(x, e, k) > 0$

Filtering-Ranking Model

 \mathcal{Y} : solution space, i.e. set of all phrase structures

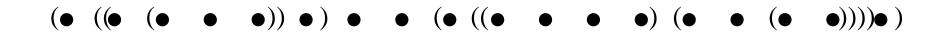
 \mathcal{Y}_{SE} : practical solution space, filtered at word level:

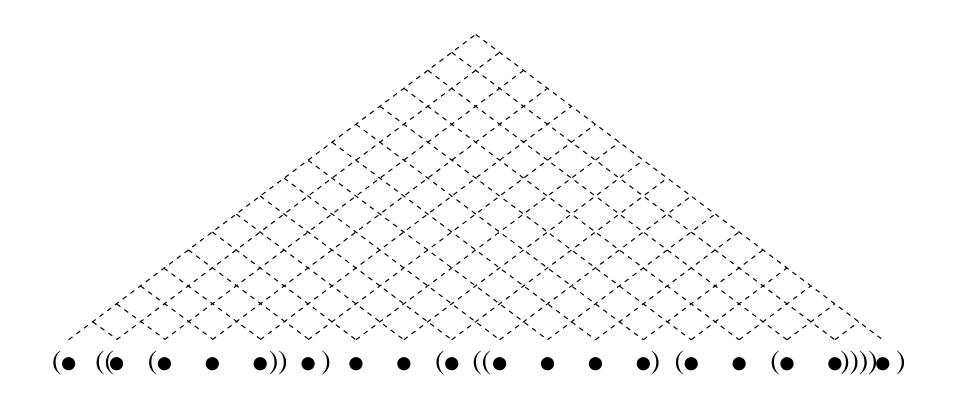
 $\mathcal{Y}_{\rm SE} = \{ y \in \mathcal{Y} \mid \forall (s, e)_k \in y \; \operatorname{start}_{\rm w}(x, s, k) \land \operatorname{end}_{\rm w}(x, e, k) \}$

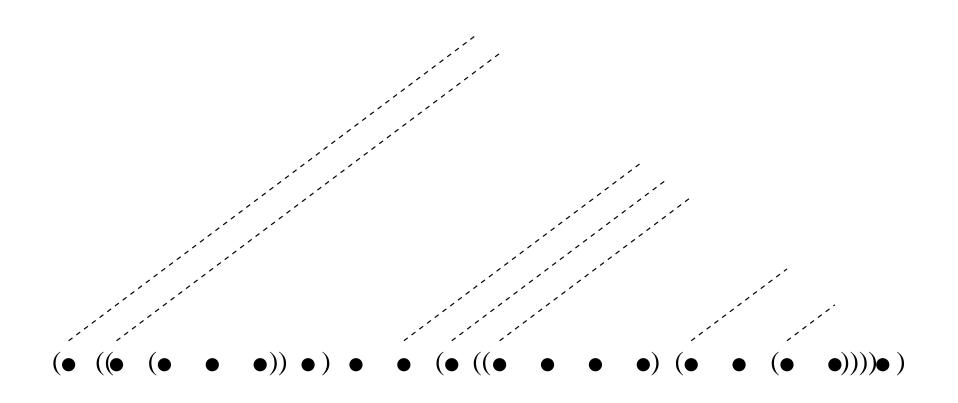
The Filtering-Ranking architecture computes:

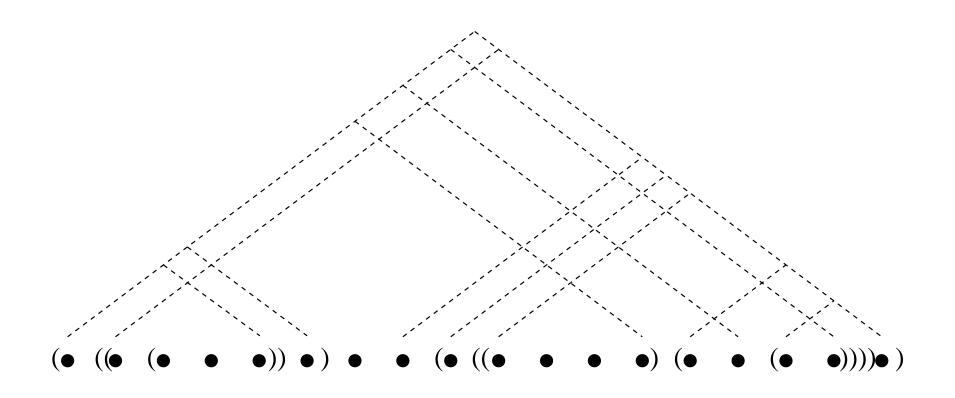
$$\mathbf{R}(x) = \underset{y \in \mathcal{Y}_{SE}}{\operatorname{arg\,max}} \sum_{(s,e)_k \in y} \operatorname{score}_{\mathbf{p}}(x, y, (s,e)_k)$$

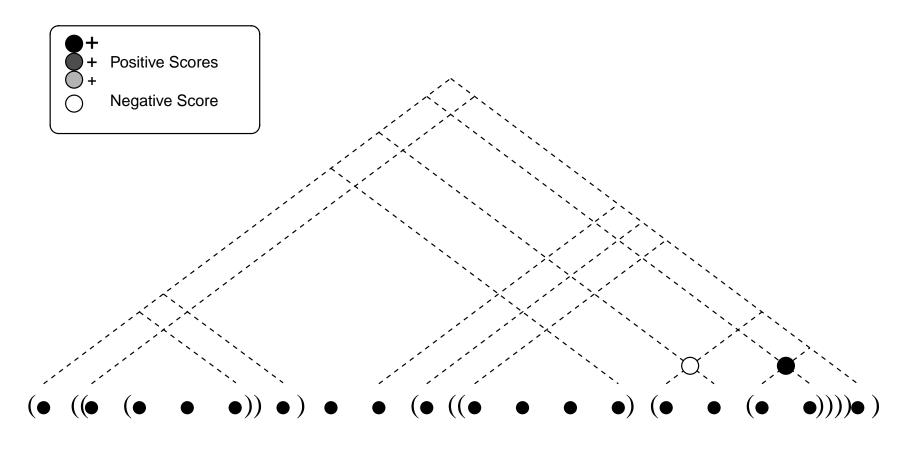
using dynamic-programming.

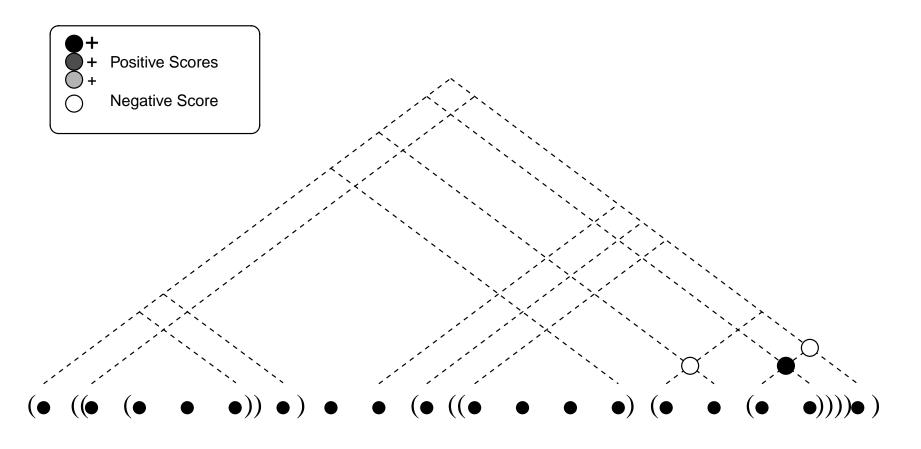


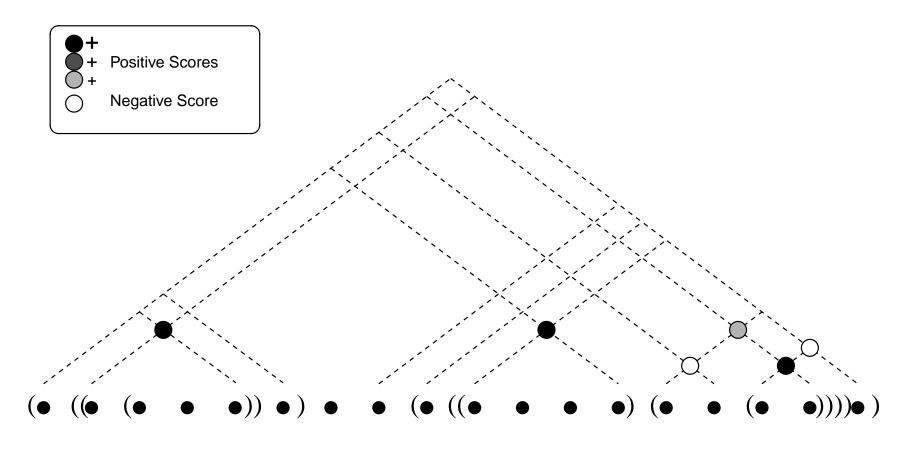


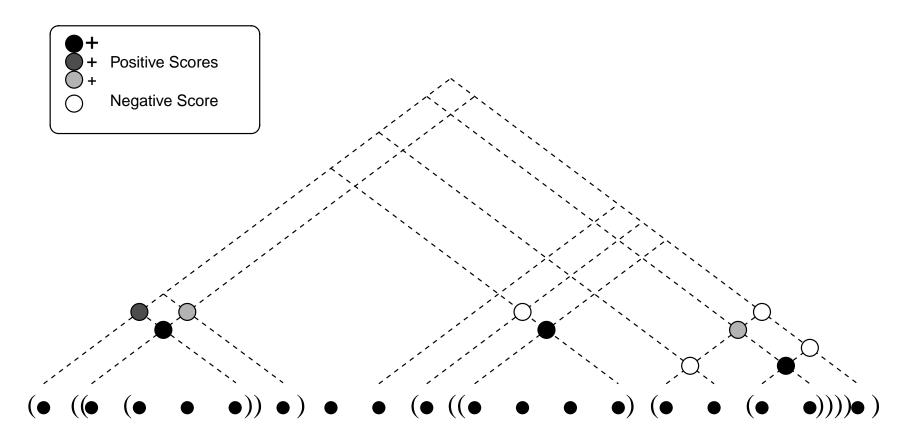


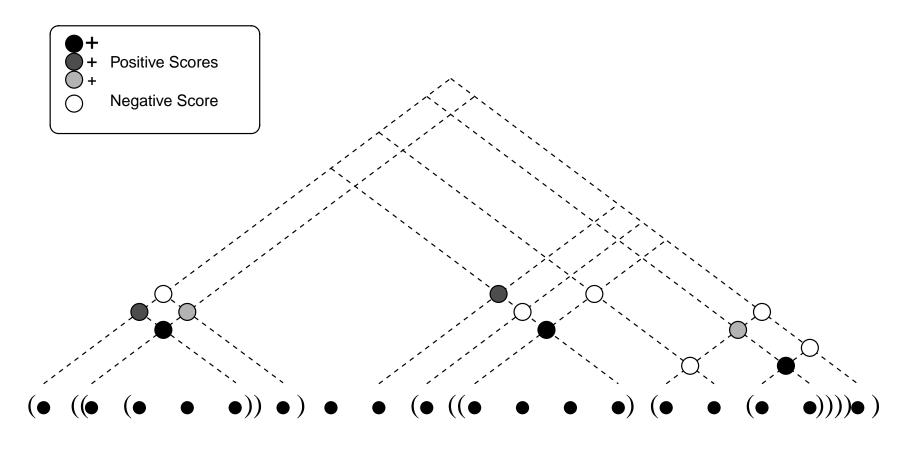


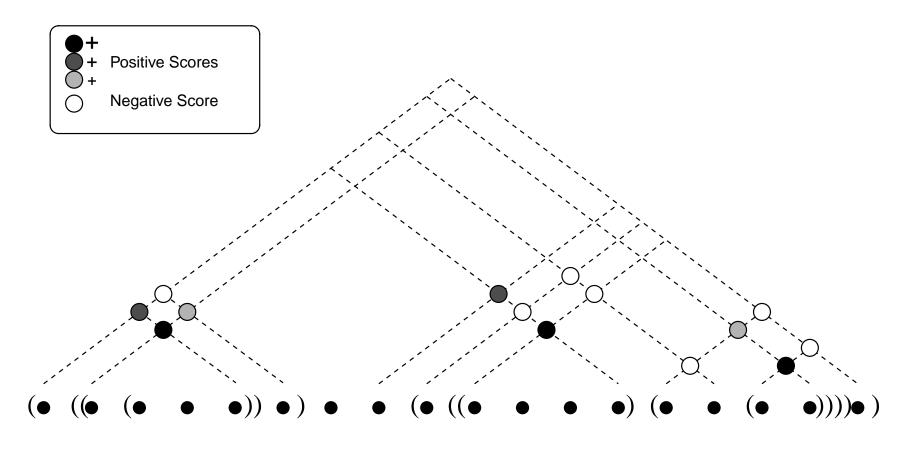


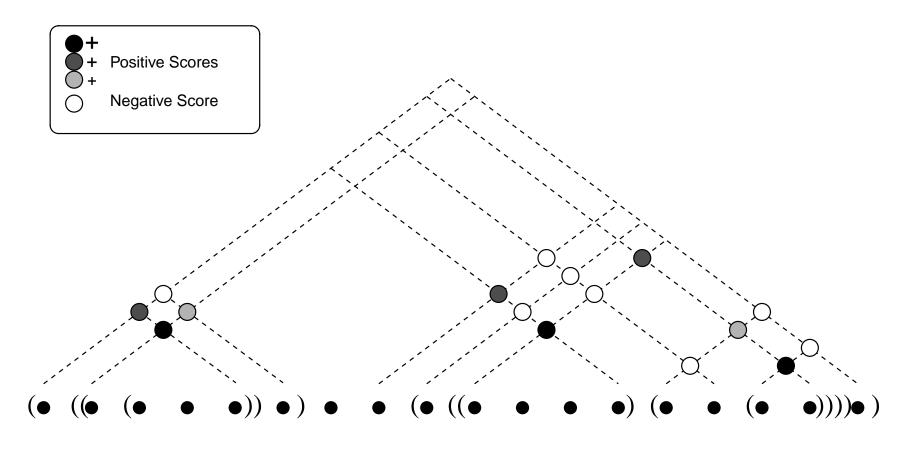


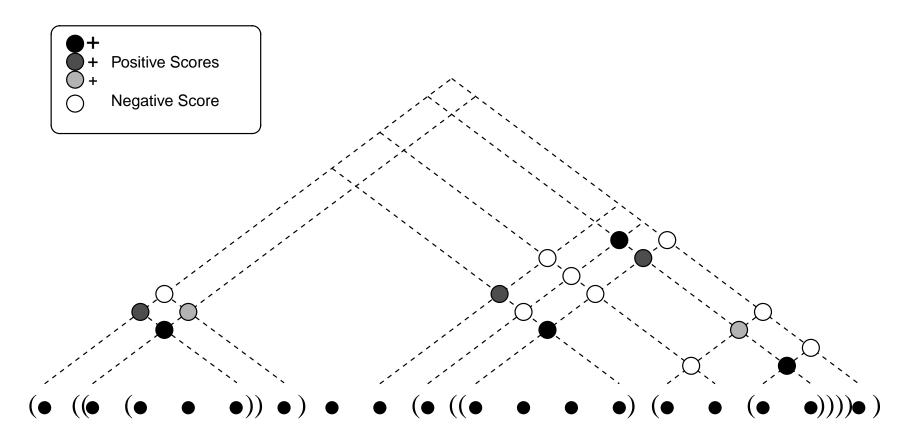


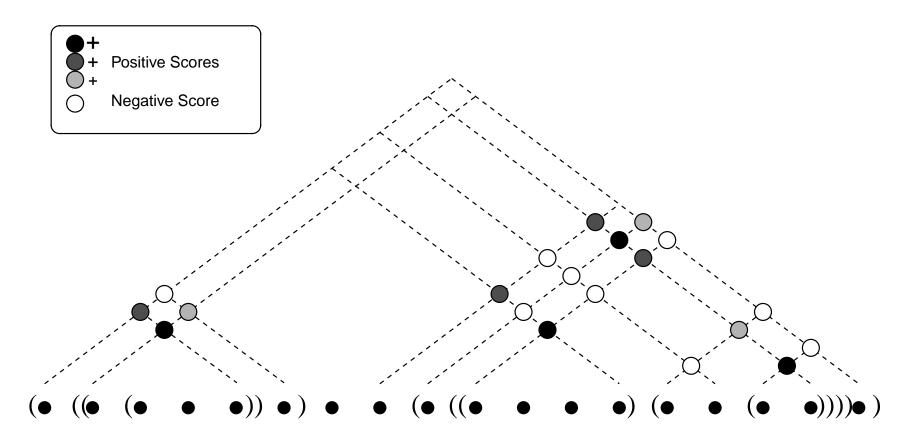


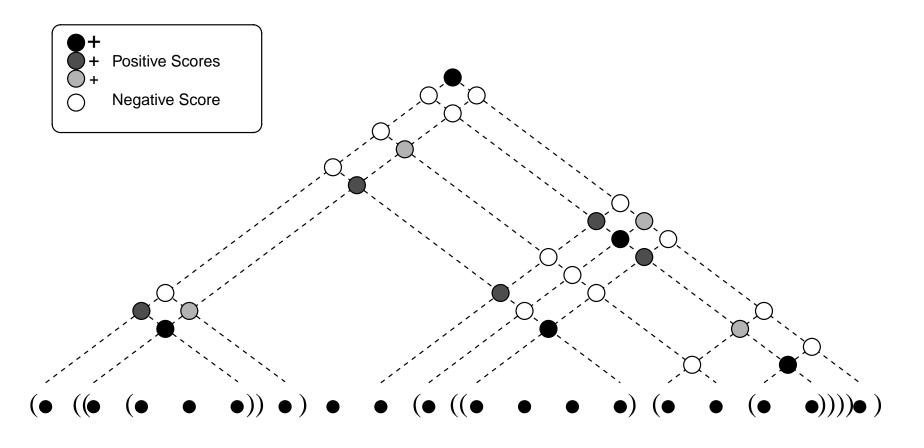


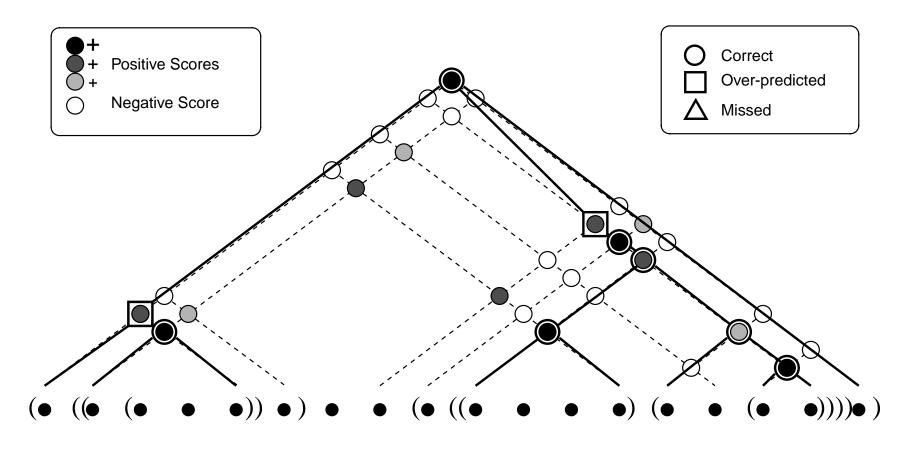


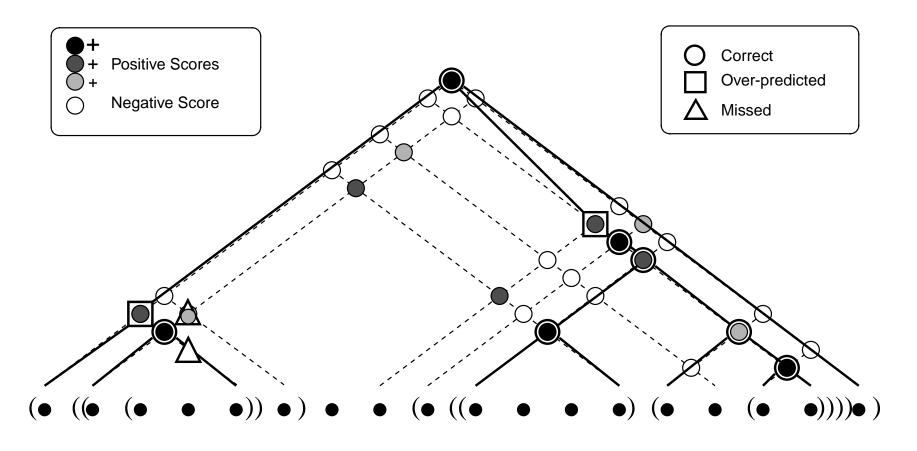












Learning a Filtering-Ranking Model

- Goal: Learn the functions $(start_w, end_w, score_p)$ so as to maximize the F₁ measure on the recognition of phrases
- Desired behavior:
 - ★ Start-End Filters:
 - ▷ Do not block any correct phrase: very high recall
 - Block phrases that produce errors at the ranking stage
 - Block much incorrect phrases as possible
 - ★ Ranker:
 - Separate between correct/incorrect structures
 - Forget about filtered phrases

Perceptron Learning at Global Level

- Following [Collins 02], we guide learning at global level:
 - ★ Do not concentrate on individual errors of the learning functions
 ★ Instead, concentrate on errors at sentence level, after inference
- Key points:
 - ★ Mistake-driven learning, a.k.a. Perceptron
 - ★ Functions are learned together, visiting online training sentences
 - ★ Errors are propagated from sentence-level, to phrase-level, to word-level

Filtering-Ranking Perceptron

- Configuration:
 - \star Feature extraction functions (given): $\phi_{\rm w}$, $\phi_{\rm p}$
 - \star Weight vectors (learned): \mathbf{w}_{S} , \mathbf{w}_{E} , \mathbf{w}_{p}
- Algorithm: visit online sentence-structure pairs (x, y):
 - 1. Infer the best phrase structure \hat{y} for \boldsymbol{x}
 - 2. Identify errors and provide feedback to weight vectors. We consider only errors at global level, comparing y and \hat{y} :
 - **\star** Missed Phrases (those in $y \setminus \hat{y}$)
 - **\star** Over-predicted Phrases (those in $\hat{y} \setminus y$)

FR-Perceptron: Feedback on Missed phrases

If a phrase $(s, e)_k$ is missed, do promotion updates:

• if word s is not positive start for k: $\mathbf{w}_{\mathrm{S}} = \mathbf{w}_{\mathrm{S}} + \phi_{\mathrm{w}}(x,s,k)$

• if word e is not positive end for k: $\mathbf{w}_{\rm E} = \mathbf{w}_{\rm E} + \phi_{\rm w}(x,e,k)$

• if $(s, e)_k$ passes the filter (s/e are positive start/end for k): $\mathbf{w}_p = \mathbf{w}_p + \phi_p(x, y, (s, e)_k)$

FR-Perceptron: Feedback on Over-Predicted phrases

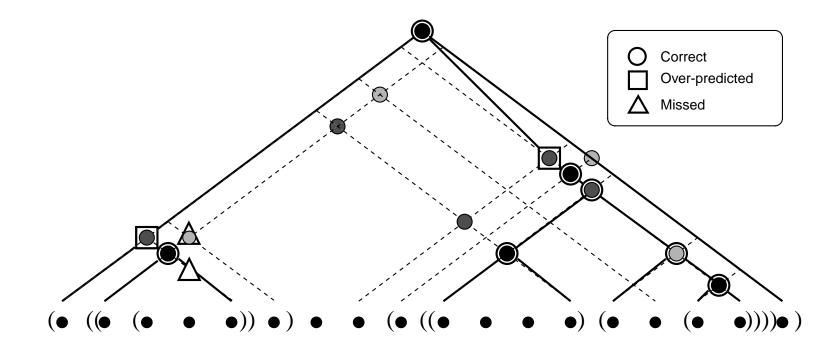
If a phrase $(s, e)_k$ is over-predicted, do demotion updates:

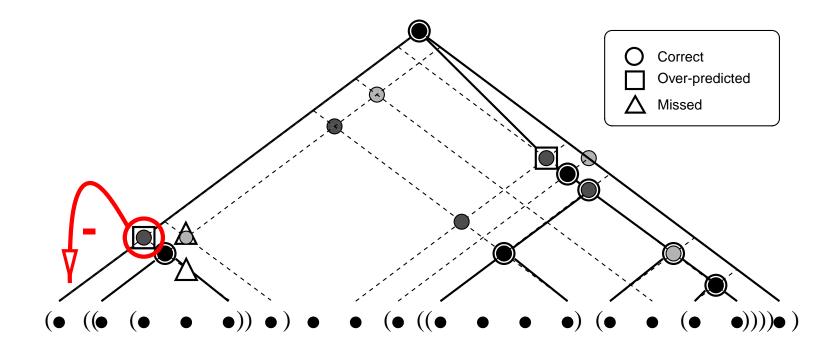
• Give feedback to the ranker:

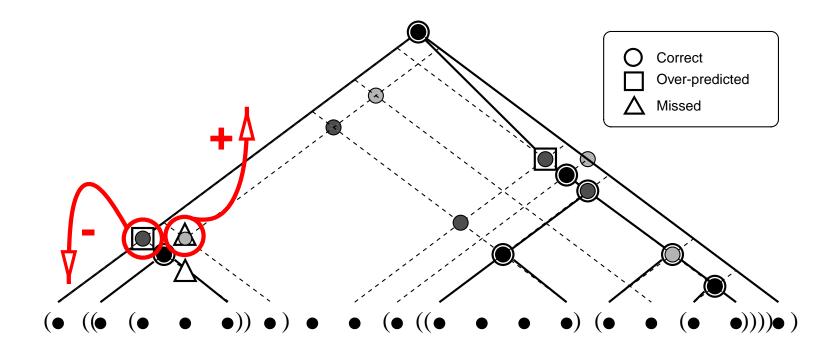
$$\mathbf{w}_{\mathbf{p}} = \mathbf{w}_{\mathbf{p}} - \phi_{\mathbf{p}}(x, y, (s, e)_k)$$

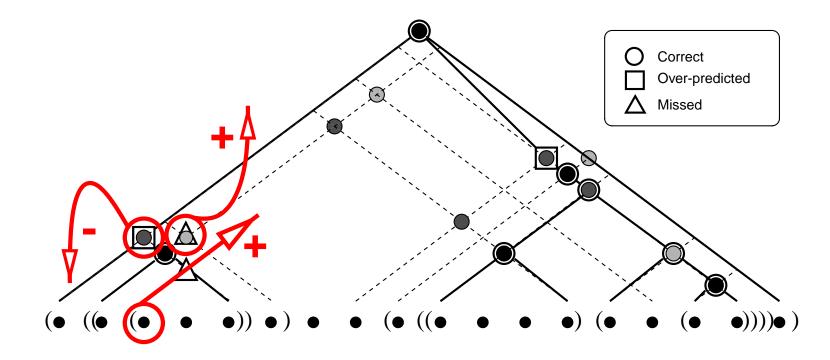
• If word s is not a correct start for k: $\mathbf{w}_{\mathrm{S}} = \mathbf{w}_{\mathrm{S}} - \phi_{\mathrm{w}}(x,s,k)$

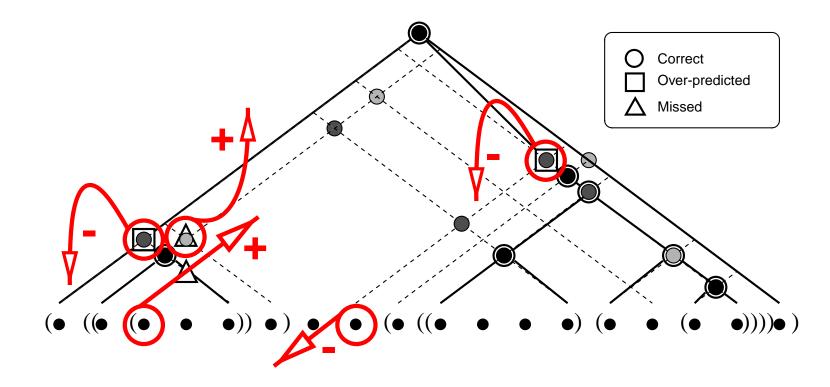
• If word e is not a correct end for k: $\mathbf{w}_{\rm E} = \mathbf{w}_{\rm E} - \phi_{\rm w}(x,e,k)$



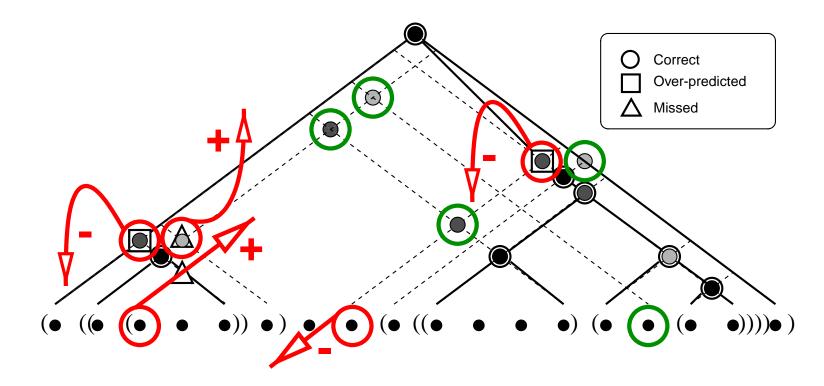








• Local predictions are **corrected** wrt. the global solution



• Local predictions that do not hurt globally are not penalized

Empirical validation of FR-Perceptron

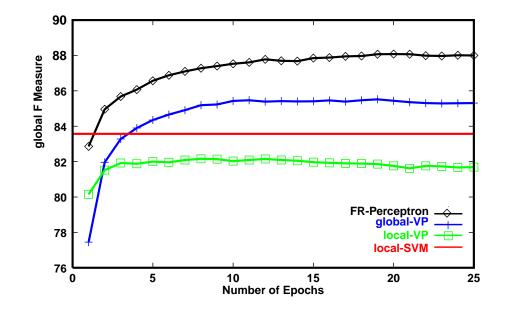
- We perform a number of experiments to validate the behavior of FR-Perceptron
- Problem: Clause Identification, following CoNLL-2001 Shared Task:
 - ★ One type of phrases: clauses
 - ★ Hierarchical Structure
 - \star Training: \sim 9,000 sentences, \sim 25,000 clauses
 - \star Test: \sim 1,700 sentences, \sim 4,900 clauses

Empirical validation of FR-Perceptron

We compare four training strategies for the Filtering-Ranking model:

	type	w's trained	R on F	penalty wrt.
local-VP	VP	separatedly	no	binary sign
local-SVM	SVM	separatedly	no	binary sign
global-VP	VP	together	yes	binary sign
FR-Perceptron	VP	together	yes	arg max

Empirical validation of FR-Perceptron Overall Results



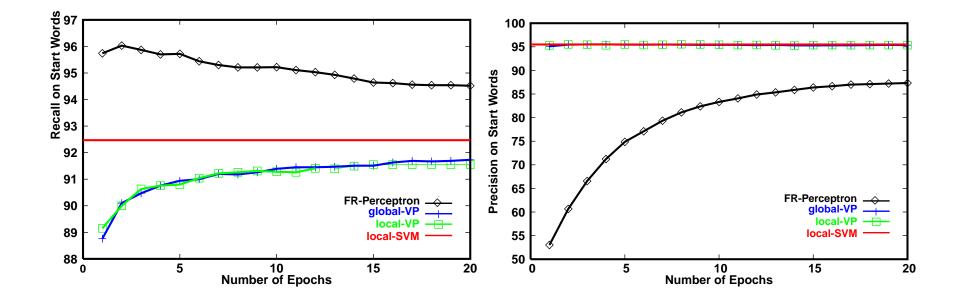
- Global training strategies perform better than local strategies
- Feedback after inference trains more effectively the recognizer

Empirical validation of FR-Perceptron Behavior of the Start-End Filter

We look at the performance of Start-End functions:

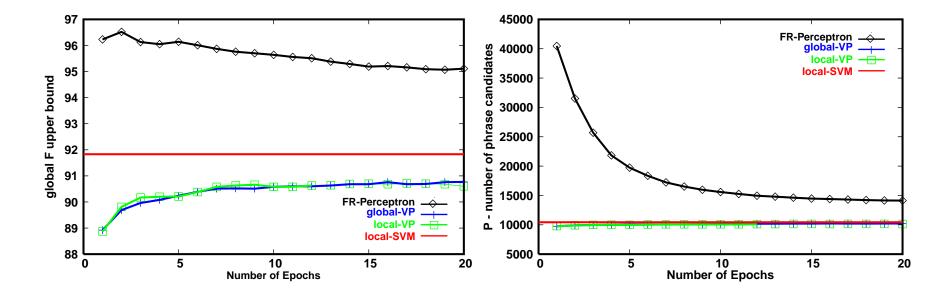
- Precision/Recall of Start-End
- How much the phrase space is reduced?
- What is the maximum achievable F₁ after the Filter?

Empirical validation of FR-Perceptron Recall/Precision on Start words



- FR-Perceptron favors recall, others favor precision
- On End words, the same behavior is observed

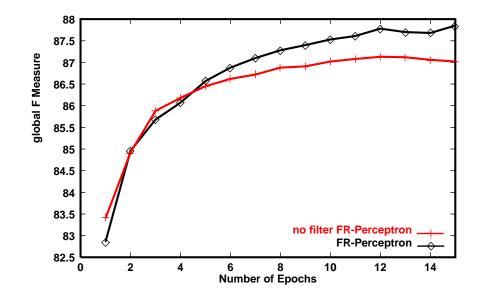
Experiments on Clause Identification Upper Bound F₁**/Explored Phrases**



- FR-Perceptron maintains a high upper-bound F₁ for the ranking layer (left), and reduces the space of explored phrases (right)
- Other methods are not sensitive to F-R interactions

Empirical validation of FR-Perceptron Does the Filter help in performance?

• We train the architecture without the Filter (UB- $F_1 = 100\%$):



• Filtering favors not only efficiency, but also global accuracy

Outline

- Introduction: Phrase Recognition
- Learning Methods for Text Analysis Tasks
- Filtering-Ranking Architecture
- Systems and Results on Syntactic-Semantic Parsing
- Conclusion and Future Research

Phrase Recognition in Syntactic-Semantic Analysis

- We apply the Filtering-Ranking architecture to three NLP recognition tasks
- We follow the CoNLL Shared Task settings

	edition	nature	$ \mathcal{K} $	structure
NP Chunking	2000	syn.	1	sequential
Syntactic Chunking	2000	syn.	11	sequential
Clause Identification	2001	syn.	1	hierarchical
Semantic Role Labeling	2004	syn./sem.	20	seq./hier.

General Details about the Systems

- Averaged predictions: better convergence, better accuracy
- Feature Extraction functions:
 - $\star~\phi_{\rm w}$: window-based representations
 - $\star~\phi_{\rm p}$: patterns of the phrase candidate
 - ★ Both make use of predictions on the explored space:
 - Inference might lead to a sub-optimal, but accuracy is better
- Polynomial kernels of degree two:
 - ★ Much better than default linear predictions
 - ★ No improvement with higher degrees

Application to Syntactic Chunking

• Sequential structures:

- ★ Chunks do not overlap
- ★ Chunks do not admit embedding
- Inference: Viterbi-like dynamic programming
- Following the CoNLL-2000 Shared Task. Trained for:
 - NP-Chunking: a single type of chunk, i.e. NP
 Syntactic Chunking: eleven types of chunks (NP, VP, PP, ...)
- Many systems are evaluated on this benchmark data.
 All of them approach the problem as a tagging task.

Syntactic Chunking - Results

Reference	Technique	Precision	Recall	\mathbf{F}_1	
[Zhang 05]	SVD-ASO	94.57	94.20	94.39	
[Zhang 02]	Winnow	94.28	94.07	94.17	
[Kudo & Matsumoto 01]	SVM voting	93.89	93.92	93.91	
[Kudo & Matsumoto 01]	SVM single	93.95	93.75	93.85	
FRP-Chunker	FR-Perceptron	94.20	93.38	93.79	
[Zhang 05]	SVD	93.83	93.37	93.60	
[Zhang 02]	Winnow	93.54	93.60	93.57	
[Kudo & Matsumoto 00]	SVM	93.45	93.51	93.48	
[van Halteren 00]	MBL&WPD	93.13	93.51	93.32	
[Tjong Kim Sang 00]	MBL voting	94.04	91.00	92.50	
+ 8 shared task sytems more					

NP Chunking - Results

Reference	scope	Technique	Prec.	Rec.	F ₁
[Zhang 05]	all	SVD-ASO	unav.	unav.	94.70
FRP-Chunker	all	FR-Perc.	94.55	94.37	94.46
[Kudo & Matsumoto 01]	all	SVM voting	94.47	94.32	94.39
[Zhang 02]	all	Winnow	94.39	94.37	94.38
[Sha & Pereira 03]	NP	CRF	unav.	unav.	94.38
FRP-Chunker	NP	FR-Perc.	94.69	93.98	94.33
[Kudo & Matsumoto 01]	all	SVM single	94.54	94.09	94.32
[Sha & Pereira 03]	NP	MM-VP	unav.	unav.	94.09
[Zhang 02]	all	Winnow	93.80	93.99	93.89
[Collins 02]	NP	MM-VP	unav.	unav.	93.53

Application to Clause Identification

- A single type of phrases: clauses
- Clauses form hiearchical structures in a sentence
- Inference: CKY-like dynamic programming
- Following the CoNLL-2001 Shared Task

Clause Identification - Results

Reference	Technique	Precision	Recall	\mathbf{F}_1
▷ FR-Clauser	FR-Perceptron	88.17	82.10	85.03
[Carreras et al. 02]	AdaBoost class.	90.18	78.11	83.71
[Carreras & Màrquez 01]	AdaBoost class.	84.82	78.85	81.73
[Molina & Pla 01]	HMM	70.85	70.51	70.68
[Tjong Kim Sang 01]	Memory-based	76.91	65.22	70.58
[Patrick & Goyal 01]	AdaBoost	73.75	64.56	68.85
[Dejean 01]	Theory Ref.	72.56	58.69	64.89
[Hammerton 01]	LSTM-NNet	55.81	49.49	52.46

Application to Semantic Role Labeling

- We follow the CoNLL-2004 Shared Task: puts SRL after partial parsing analysis (chunks and clauses)
- The SRL strategy looks for a hierarchy of arguments in a sentence, where:
 - ★ Arguments are formed by joining elements found within clauses: words, chunks and inner clauses
 - An argument is related to number of verbs. These relations are labelled with semantic roles
- Other systems in literature approach the problem as a chunking task, recognizing arguments of different predicates independently

Semantic Role Labeling - Results

Reference	Technique	Precision	Recall	\mathbf{F}_1
[Hacioglu et al. 04]	SVM	72.43	66.77	69.49
[Punyakanok et al. 04]	Winnow	70.07	63.07	66.39
FR-SRLabeler	FR-Perceptron	71.81	61.11	66.03
[Lim et al. 04]	Max-Entropy	68.42	61.47	64.76
[Park et al. 04]	SVM	65.63	62.43	63.99
[Higgins 04]	TBL	64.17	57.52	60.66
[van den Bosch et al. 04]	Memory-Based	67.12	54.46	60.13
[Kouchnir 04]	Memory-Based	56.86	49.95	53.18
[Baldewein et al. 04]	Max-Entropy	65.73	42.60	51.70
[Williams et. al 04]	TBL	58.08	34.75	43.48

Outline

- Introduction: Phrase Recognition
- Learning Methods for Text Analysis Tasks
- Filtering-Ranking Architecture
- Systems and Results on Syntactic-Semantic Parsing
- Conclusion and Future Research

Main Contributions (i): A Framework for Phrase Recognition

- We have studied the problem of recognizing phrase structures in a sentence.
 - ★ Many problems in NLP analysis can be casted as phrase recognition tasks
- We have discussed architectures based on learning and inference:
 - ★ Models based on decompositions at word and phrase level
 - ★ Incremental inference procedures
 - ★ Learning algorithms at local and global contexts

Main Contributions (ii): Filtering-Ranking Perceptron

- A novel architecture for general phrase recognition:
 - ★ Puts learning at phrase level
 - ★ Uses filtering to reduce the solution space
- FR-Perceptron:
 - ★ Global online learning, with ultra-conservative feedback
 - ★ Experiments show that FR-Perceptron trains the functions of the architecture as word filters and phrase rankers
 - ★ Analysis of convergence (see thesis)

Main Contributions (iii): Systems for Syntactic-Semantic analysis

- The Filtering-Ranking architecture is general and flexible
- We have developed Filtering-Ranking systems for three CoNLL Shared Tasks
- In all cases, we obtain results among the top in the state-of-the-art
- On Clause Identification, our system obtains the best results

Future Lines (i)

- From Greedy to Exact Inference in Global Learned Models
 - ★ We would like to test the influence of different inference strategies, in models that exploit increasing levels of dependencies
- Learning Issues for FR-Perceptron
 - ★ Gain theoretical understanding on the filtering-ranking interactions
- On Natural Language Tasks
 - ★ Joint analysis of several layers: e.g., PoS tagging + Chunking
 ★ Increasing levels of syntax, from shallow, to partial, to full

Future Lines (ii)

- Introducing Knowledge
 - ★ Learn on the top of a grammar-based exploration
- On Representations and Kernels
 - ★ Look for more efficient kernel-based representations

Selected Publications (i): Learning Architectures

- Xavier Carreras, Lluís Màrquez and Jorge Castro "Filtering-Ranking Perceptron Learning for Partial Parsing" *Machine Learning*. 2005.
- Xavier Carreras and Lluís Màrquez "Online Learning via Global Feedback for Phrase Recognition" In *Proceedings of NIPS-2003*. Vancouver, Canada. 2003.
- Xavier Carreras, Lluís Màrquez, Vasin Punyakanok and Dan Roth "Learning and Inference for Clause Identification" In *Proceedings of ECML-2002*. Helsinki, Finland. 2002.

Selected Publications (ii): Shared Task Systems

- Xavier Carreras, Lluís Màrquez and Grzegorz Chrupała "Hierarchical Recognition of Propositional Arguments with Perceptrons", CoNLL-2004
- Xavier Carreras, Lluís Màrquez and Lluís Padró
 "A Simple Named Entity Extractor Using AdaBoost", CoNLL-2003
- Xavier Carreras, Lluís Màrquez and Lluís Padró "Learning a Perceptron-Based Named Entity Chunker via Online Recognition Feedback", CoNLL-2003
- Xavier Carreras, Lluís Màrquez and Lluís Padró "Named Entity Extraction using Adaboost", CoNLL-2002
- Xavier Carreras and Lluís Màrquez
 "Boosting Trees for Clause Splitting", CoNLL-2001

Selected Publications (iii): Shared Task Organization

• Xavier Carreras and Lluís Màrquez

"Introduction to the CoNLL-2005 Shared Task: Semantic Role Labeling" In *Proceedings of CoNLL-2005*, Ann-Arbor, USA. 2005.

 Xavier Carreras and Lluís Màrquez "Introduction to the CoNLL-2004 Shared Task: Semantic Role Labeling" In *Proceedings of CoNLL-2004*, Boston, USA. 2004.

Gràcies!