
A Maximum Matching Algorithm for Basis Selection
in Spectral Learning

Ariadna Quattoni and Xavier Carreras and Matthias Gallé
Xerox Research Centre Europe (XRCE)

Meylan, France
{ariadna.quattoni,xavier.carreras,matthias.galle}@xrce.xerox.com

Abstract

We present a solution to scale spectral algo-
rithms for learning sequence functions. We
are interested in the case where these func-
tions are sparse (that is, for most sequences
they return 0). Spectral algorithms reduce
the learning problem to the task of comput-
ing an SVD decomposition over a special type
of matrix called the Hankel matrix. This ma-
trix is designed to capture the relevant statis-
tics of the training sequences. What is crucial
is that to capture long range dependencies
we must consider very large Hankel matrices.
Thus the computation of the SVD becomes a
critical bottleneck. Our solution finds a sub-
set of rows and columns of the Hankel that
realizes a compact and informative Hankel
submatrix. The novelty lies in the way that
this subset is selected: we exploit a maximal
bipartite matching combinatorial algorithm
to look for a sub-block with full structural
rank, and show how computation of this sub-
block can be further improved by exploiting
the specific structure of Hankel matrices.

1 INTRODUCTION

Our goal is to model functions whose domain are dis-
crete sequences over some finite alphabet. Our focus is
on sparse functions, by which we mean functions that
have the property that only a very small proportion of
the sequences in the domain map to a non-zero value.
We call those sequences the support of the function.
The main motivation lies in solving problems arising

Proceedings of the 20th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2017, Fort Laud-
erdale, Florida, USA. JMLR: W&CP volume 54. Copy-
right 2017 by the author(s).

in Natural Language Processing (NLP) applications,
where sparse sequence functions are of special inter-
est. For example, think of all possible sequences of T
letters that constitute valid English words of length T .
If ⌃ is the set of English letters, is clear that out of the
⌃T possible letter sequences only a very small fraction
are valid words (i.e. should have non-zero probability).

One interesting function class over ⌃? is that of func-
tions computed by Non-Deterministic Weighted Au-
tomata (WA), since this class properly includes classes
such as ngram models and hidden Markov models. In
recent years several approaches for estimating WAs
have been proposed that are based on representing the
function computed by a WA using a Hankel matrix
[Beimel et al., 2000, Jaeger, 2000, Hsu et al., 2009,
Anandkumar et al., 2012, Balle et al., 2013].

As an illustration of the method, consider the following
problem: Assume we are given a set of pairs (x, f(x)),
where x is a sequence in the support of some target
function f over ⌃? and we wish to learn a WA that
approximates f . The spectral method provides a solu-
tion to this problem and it would work in four steps:

1. Basis Selection: Choose a set of prefixes P and
su�xes S.

2. Build a Hankel matrix: H 2 R|P|⇥|S| where the
entry H(p, s) is the value of the target function
on the sequence obtained by concatenating prefix
p with su�x s.

3. Perform SVD on H = U⌃V>.

4. Use the factorization F = U⌃ and B = V> and
H to recover the parameters of the minimal WA,
following Hsu et al. [2009] (see §2.3 for details).

The computational cost of the algorithm will be dom-
inated by the SVD step O

�
min(|P|, |S|)3

�
, thus to

control the computational complexity, it is critical to
choose a small and yet informative basis.

Maximum Bipartite Matching for Spectral Learning

The theory of spectral learning tells us that if the tar-
get function has a minimal WA representation of size
n, there will be a complete basis where |P| = |S| = n,
where complete means that the rank of the correspond-
ing Hankel defined over that basis is the same as the
size of the minimal WA. But the theory does not give
a practical answer to how to choose such a basis. The
design of e�cient algorithms for choosing an informa-
tive and yet small sample-dependent basis is still an
open problem, which is the focus of our paper.

We propose an e�cient combinatorial algorithm for
sample-dependent basis selection. At its core, our
strategy computes a maximum matching of the bi-
partite graph associated with the sparsity pattern of
a Hankel matrix. The main idea is quite simple, we
find a subset of prefixes and su�xes in the given sam-
ple, such that the corresponding Hankel matrix defined
over that basis has full structural rank. The key in-
sight is that for sparse matrices it is easy to remove
symbolic dependencies (i.e. dependencies at the level
of the sparsity pattern of the matrix). Similar ideas
have a long history in the numerical optimization lit-
erature, where combinatorial algorithms are used for
computing preconditioners for solving large sparse lin-
ear systems. However, to the best of our knowledge we
are the first ones in applying this idea in the context
of spectral learning.

We show that when the Hankel matrix of a function
satisfies some non-degeneracy assumptions, our basis
selection algorithm is optimal, in the sense that it
computes the smallest complete basis. While the non-
degeneracy assumption will not be always satisfied, our
experiments suggest that it is always almost satisfied
for sparse sequence functions.

Our experiments on a real sequence modeling tasks
show that the proposed algorithm can select a basis
that is at least an order of magnitude smaller than the
best alternative methods for basis selection, resulting
in an SVD step which is at least two orders of magni-
tude faster.

1.1 Related Work

Although choosing a basis is in practice an important
task for having a robust spectral learning algorithm,
not much research has focused on this problem. One
popular approach is to choose a basis by selecting all
observed prefixes and su�xes of length less than T , for
some T > 0 [Hsu et al., 2009, Siddiqi et al., 2010]. In
practice, this strategy only works if there are no long-
range dependencies in the target function. Wiewiora
[2005] presented a greedy heuristic where for each pre-
fix added to the basis a computation taking exponen-
tial time in the number of states n is required. Bailly

et al. [2009] suggest to include all observed prefixes and
su�xes (observed in the sample) in the basis. There
are some theoretical results [Denis et al., 2016] that
suggest that under certain assumptions this is the op-
timal strategy, in the sense that there is no statistical
harm in considering all prefixes and su�xes. How-
ever, this approach is in practice unfeasible: to give a
concrete example if one considers modeling the distri-
bution of n-grams up to length 10 in a standard NLP
benchmark, the unique number of observed prefixes
and su�xes is at least tens of millions. Finally, Balle
et al. [2012] gave the first theoretical results for the
problem of basis selection. They show that by sam-
pling prefixes and su�xes proportional to their fre-
quency in a large enough sample, with high probabil-
ity, a complete basis will be found. They also provide
experimental results [Balle et al., 2013].

2 PRELIMINARIES

2.1 Non Deterministic Weighted Finite State
Automata

We start by defining a class of functions over discrete
sequences. More specifically, let x = x

1

· · ·x
t

be a se-
quence of length t over some finite alphabet ⌃. We
use ⌃? to denote the set of all finite sequences with
elements in ⌃, and we use ✏ to denote the empty se-
quence. The domain of our functions is ⌃?.

An Non-Deterministic Weighted Automaton (WA)
with n states is defined as a tuple: A =
h↵

0

,↵1, {A
�

}

�2⌃

i where ↵
0

, ↵1 2 Rn are the ini-
tial and final weight vectors and A

�

2 Rn⇥n are the
transition matrices associated to each symbol � 2 ⌃.
The function f

A

: ⌃?

! R realized by an WA A is
defined as:

f
A

(x) = ↵>
0

A
x1 · · ·Axt↵1 . (1)

The above equation is an algebraic representation of
the computation performed by an WA on a sequence
x. To see this consider a state vector s

i

2 Rn where
the jth entry represents the sum of the weights of all
the state paths that generate the prefix x

1:i

and end
in state j. Initially, s

0

= ↵
0

, and then s>
i

= s>
i�1

A
xi

updates the state distribution by simultaneously emit-
ing the symbol x

i

and transitioning to generate the
next state vector. WAs constitute a rich function class
which properly includes popular sequence models such
as HMMs.

2.2 Hankel Matrices

We now introduce the concept of Hankel matrices for
WA, which are central to the spectral learning algo-
rithm, and to the result in this paper.

Ariadna Quattoni, Xavier Carreras, Matthias Gallé

✏

a

aa

aab

b

bb

c

ca

cb

✏

b

ab

aab

bb

a

c

ca

cb

P = {✏, a, aa, aab, c}

S = {✏, b, ab, aab, a}

✏ b a
b

a
a
b

bb a c ca cb

✏ 1 1 0 1 1 0 1 1 1
a 0 0 1 0 0 0 0 0 0
aa 0 1 0 0 0 0 0 0 0

aab 1 0 0 0 0 0 0 0 0

b 1 1 0 0 0 0 0 0 0

bb 1 0 0 0 0 0 0 0 0
c 1 1 0 0 0 1 0 0 0
ca 1 0 0 0 0 0 0 0 0

cb 1 0 0 0 0 0 0 0 0

HP⇥S
HPT⇥ST

rank(HPT⇥ST) = struct rank(HPT⇥ST) = 5

rank(HP⇥S) = struct rank(HP⇥S) = 5

⌃ = {a, b, c}

T = {(✏, 1), (aab, 1), (b, 1), (bb, 1),

(c, 1), (ca, 1), (cb, 1)}

fT(x) =

(
1 if x 2 {✏, aab, b, bb, c, ca, cb}

0 otherwise

PT = {✏, a, aa, aab, b, bb, c, ca, cb}

ST = {✏, b, ab, aab, bb, a, c, ca, cb}

Figure 1: Illustration of the Maximum Bipartite Matching sub-block. Left: a training set and the associated
target function. Middle: a prefix-su�x graph with a corresponding maximum matching in red. Right: the full
Hankel matrix for the training set, and the submatrix given by the matching.

Let f : ⌃?

! R be an arbitrary function from se-
quences to reals (not necessarily computed by a WA).
Let P, S ✓ ⌃? be sets of sequences. We call prefixes
the elements p 2 P, and su�xes the elements s 2 S.
The Hankel matrix H

f

2 RP⇥S for f over the block
(P, S) is defined by entries H(p, s) = f(ps), where ps is
the concatenation of prefix p 2 P and su�x s 2 S. The
following theorem gives a bijection between the class
of functions computed by WA and Hankel matrices:

Theorem 1. [Schützenberger, 1961, Carlyle and Paz,
1971, Fliess, 1974] A function f : ⌃?

! R can be
realized by a WA with n states if and only if, for every
possible block (P, S), the corresponding Hankel matrix
H

f

has rank at most n.

2.3 The Spectral Method

We now give a brief description of the spectral method
for estimating a minimal WA representation for a tar-
get function. The algorithm is a constructive version
of the theorem above: it builds a Hankel matrix of
rank n and computes the associated n state WA from
it. We only provide a higher-level description of the
method; for a complete derivation and the theory jus-
tifying the algorithm we refer the reader to the works
by Hsu et al. [2009] and Balle et al. [2013].

Assume a training set T in the form of a collection
of sequences, each paired with a target real value. We
will denote as fT the function obtained from the train-
ing set, i.e. if x 2 T, fT(x) is the target value. For
example, T could be a corpus of English sentences, and
fT(x) the probability with which x appears in T.

Given a training set T, the spectral algorithm com-
putes a WA A with n states, where n is a parameter
of the algorithm, such that f

A

is a good approxima-
tion of fT. See Hsu et al. [2009] for the generalization
theory of the algorithm. The method is described by
the following steps:

(1) Select a Hankel block. Let PT and ST be respec-
tively the sets of all unique prefixes and su�xes
of sequences in T. Select a block out of them,
namely, a subset of prefixes P ✓ PT and a subset
of su�xes S 2 ST.

(2) Compute Hankel matrices for (P, S).

(a) Compute H 2 RP⇥S, with entries
H(p, s) = fT(ps).

(b) Compute hP 2 RP with hP(p) = fT(p) and
hS 2 RS with hS(s) = fT(s).

(c) For each � 2 ⌃, compute H
�

2 RP⇥S with
entries H

�

(p, s) = fT(p�s).

(3) Compute an n-rank factorization of H. Compute
the truncated SVD of H, i.e. H ⇡ U⌃V> result-
ing in a matrix F = U⌃ 2 RP⇥n and a matrix
B = V 2 RS⇥n.

(4) Recover the WA A of n states. Let M+ denote
the Moore-Penrose pseudo-inverse of a matrix M.
The elements of A are recovered as follows. Initial
vector: ↵>

0

= h>
SB. Final vector: ↵1 = F+hP.

Transition Matrices: A
�

= F+H
�

B, for � 2 ⌃.

There are some observations to make that motivate
the contribution of this paper. Consider the complete

Maximum Bipartite Matching for Spectral Learning

training block (PT, ST), and let HT denote the Hankel
matrix for this complete block. If we want to fully re-
construct the function fT, we need an automata A that
has as many states as the rank of HT. By using less
states, we will be learning a low-rank approximation
of fT in the form of a WA.

The second observation is that any sub-block (P, S)
whose Hankel submatrix has full rank (with respect to
the rank of HT) can be used to fully recover fT.

Thus, in the ideal case, step (1) of the algorithm would
select a compact submatrix of HT that preserves the
rank. By doing so, the cost of steps (4) and (5) would
only depend on the size of the submatrix. Even if we
can not get the ideal block, it would be good to have
a method for step (1) that produces a small and infor-
mative block. Unfortunately, in the general case (i.e.
for any real matrix) finding the submatrix of fixed size
that has maximal rank is known to be NP-complete
[Peeters, 2003]. In this paper we propose an algorithm
to find a small submatrix of HT of high rank.

As a final note, spectral methods can be used to learn
a language model, that is, a probability distribution
over all sentences of a language. A straightforward
way to learn a language model is to regard the train-
ing collection T as an empirical distribution over se-
quences of words, where the probability of a sequence
is proportional to the number of times it appears, i.e.
fT(x) = PrT(x). Another choice, sometimes referred
to as moment matching, is to set the function fT(x) to
be the expected number of times that the sequence x
appears as a subsequence of a random sequence sam-
pled from an empirical distribution. In this case, the
spectral algorithm will learn a WA that computes ex-
pectations of subsequence frequencies. One useful re-
sult is that this WA can be converted to another WA
that corresponds to the underlying language model,
i.e. a distribution over sequences; see Balle et al. [2013]
for details. In practice this second method is preferred,
since subsequence frequency expectations are statistics
that are more stable to estimate from a training set.

3 SUB-BLOCK SELECTION VIA
BEST BIPARTITE MATCHING

We start this section by defining the structural rank
of a matrix. Our proposed algorithm will search for a
submatrix of H with full structural rank:

Definition 1. The structural rank of a matrix is
the maximum rank of all numerical matrices with the
same non-zero pattern.

In the context of WA and Hankel matrices this has
a nice interpretation as a notion of complexity of the
support of a function. This is because the structural

rank of a Hankel matrix corresponds to the number
of states of the minimal WA for the hardest function
defined over that support.

Notice that by definition, the numerical rank of a ma-
trix is always less or equal than its structural rank,
thus the structural rank of the Hankel matrix H of a
function f

A

will be always greater or equal than the
number of states of the minimal WA computing f

A

.
Our algorithm is based on finding a submatrix of H of
full structural rank.

The problem of finding a full structural rank sub-block
of H can be casted as an instance of maximum bi-
partite matching [Edmonds, 1967]. Given a bipartite
graph (V,G) where V are the set of vertices and G the
set of edges, the maximum bipartite matching is de-
fined as the largest set of non-intersecting edges, where
non-intersecting means that no two edges in the set
share a common vertex.

In the case of the Hankel matrix for a function f
A

we
would have a bipartite graph (V,G) where on one side
we have vertices corresponding to all unique prefixes
in the support of f

A

and on the other side we have all
unique su�xes, thus: |V | = |P| + |S|. There will be
an edge connecting node i an j if the corresponding
sequence made by the concatenation of prefix i and
su�x j is in the support of f

A

. For every sequence
s of length T in the support of f

A

and every possible
cut of s into a prefix and a su�x, there will be T + 1
corresponding edges in G, thus |G| = O(T |f

A

|) where
we use |f

A

| to refer to the number of sequences in the
support of f

A

.

The maximum bipartite matching of a set of sequences
is a subset of the sequences such that no two sequences
share a common prefix or su�x and there is no larger
subset that satisfies that property. Figure 1 shows an
example of a function f

A

and its corresponding graph,
and a maximum bipartite matching for that graph.

We define the maximum bipartite matching sub-block
as the block consisting of all vertices (prefixes and suf-
fixes) in a maximum matching. Figure 1 shows an ex-
ample of a function, a maximum bipartite matching,
and the corresponding sub-block and Hankel subma-
trix.

To find a maximum bipartite matching there are sev-
eral classical algorithms. The Augmented Paths algo-
rithm runs in O

�
|V ||E|

�
, but in practice it has a much

lower average case complexity. The Hopcroft-Karp al-
gorithm runs in O

�
|E|

p
|V |

�
, removing the linear de-

pendence on V (however, in our experiments the Aug-
mented Paths algorithm was alredy very fast). In the
next section we propose an algoritm that takes advan-
tage of the structure of the Hankel matrix to obtain

Ariadna Quattoni, Xavier Carreras, Matthias Gallé

further speed ups.

3.1 On the Optimality of the Maximum
Matching Sub-block

We will use a weak version the matching property, an
assumption used by Ho↵man and McCormick [1982].
Let M be a matrix of structural rank s. M has the
weak matching property (WMP) if for any submatrix
M0 of at least s rows and s columns, the rank of M0

is equal to the structural rank of M0.

Lemma 1. Let H be a Hankel matrix that satisfies the
weak matching property. Let B be a maximum bipar-
tite matching of H and let HB be the corresponding
submatrix. B is a basis of H, i.e. the rank of HB is
equal to the rank of H.

Proof. Let s(M) be the structural rank of a matrix
M. Let n be the rank of H, and note that s(H) is
n because H has WMP. Now note that s(HB) is also
n, because the maximum bipartite matching of H is
included in HB, thus s(HB) is at least n; and it is at
most n, otherwise s(H) � s(HB) > n. Since H has
WMP, the rank of HB is n.

Ideally, we would not have to assume the match-
ing property and instead we could provide theoretical
guarantees for the maximum gap between the struc-
tural and numeric rank of a matrix. Unfortunately,
because of the discrete nature of the structural rank,
deriving useful bounds for this gap has been shown
to be a hard theoretical challenge [Ho↵man and Mc-
Cormick, 1982]. Thus to provide validation for our
assumption we resorted to an empirical evaluation of
the gap on a wide range of sequence modeling datasets,
where we observe that the weak matching property is
a reasonable assumption. The complete results are in
section B of the supplementary materials.

4 FASTER BIPARTITE MATCHING
FOR HANKEL MATRICES

As said in the previous section, finding the structural
rank can be reduced to the maximum bipartite match-
ing problem. In this section, we propose a simple
heuristic to speed-up the maximum bipartite match-
ing for the specific case where the underlying matrix
is a Hankel. We do this by exploiting structural prop-
erties of these matrices for an underlying subroutine,
the augmenting path algorithm. Each basic applica-
tion of the augmenting path increases the matching by
one, and a matching is maximum if and only if there
is no further augmenting path. The straightforward
solution of applying it on each node is equivalent to
the maximal flow algorithm, and while more sophisti-
cated algorithms where proposed [Hopcroft and Karp,

(a)
x

y

z

w

(b)
x

y

z

w

(c)
x

y

z

w

Figure 2: Illustrations of the augmenting path algo-
rithm.

1973] which find several paths per iteration, bench-
marks [Setubal, 1996] have shown that the simple al-
gorithm works in general faster.

We first describe the basic procedure: assume the
graph depicted in Figure 2 (a), and furthermore as-
sume that the current matching (not maximal) is as
follows: M = {(y, z)}. This is clearly not maxi-
mal, as a better (and maximal) matching would be
{(x, z), (y, w)}. The augmenting path procedure maps
the previous matching to the directed graph G de-
picted in Figure 2 (b).

Unselected edges will be directed from left to right,
while selected edges will be directed from right to
left. An augmenting path is then defined as a path
x
1

, . . . , x
m

over G, such that x
1

belongs to the left par-
tition, x

m

to the right one, and both x
1

and x
m

are
unmatched (this is, do not belong yet to a matching).
No restrictions are put on the intermediate nodes, but
it becomes clear that the path alternates between un-
matched pairs (left to right edges) and matched pairs
(right to left). Note that such paths can now easily
be retrieved with a standard graph traversal (in our
implementation we use a depth-first search, which we
assumed was faster on sparse graphs although this was
not verified). Starting from node x, the following path
can then be retrieved: x, z, y, w, and the graph will
then be rewired to the graph depicted in Figure 2 (c).
No further augmenting paths exist here, and the max-
imum matching algorithm therefore finishes with the
following matching: {(x, z), (y, w)}.

The specific case where the left part of the bipartite
are prefixes and the right part are su�xes creates some
strong structural constraints. Notably:

Property 1. (p�, s) is an edge in the graph i↵ (p,�s)
is an edge

This is, the edges of the bipartite graph denoting a
Hankel matrix come by (possibly overlapping) groups
of edges, each group originating in one of the support
sequences.

We propose to take advantage of that structural knowl-
edge to speed-up the maximum matching algorithm.
First, we sort the prefixes by their lengths, and start
applying the augmenting path procedure from the
longest prefix node. Each augmenting path procedure

Maximum Bipartite Matching for Spectral Learning

returns a set of edges R to be removed from the match-
ing, and a set of edges A to be added to the matching.
For each edge (�

1

. . .�
k

, s) 2 A we consider all shifted
pairs (�

1

. . .�
i

,�
i+1

. . .�
k

s). Due to Property 1, each
one of these pairs is an edge in the bipartite graph. We
check each such pair, and if both nodes are unmatched
we simply add them to the matching.

Assuming a bitset implementation of sets, the checks
can be done in O

�
|E|

�
, but in the worst-case scenario,

it may well be that none of the shifted pairs are free,
and therefore only add computation without improv-
ing the matching. In § B of the supplementary ma-
terial we report synthetic experiments that show the
speed-ups of this strategy compared to the standard
method.

5 EXPERIMENTS

To validate our sub-block selection strategy, we present
comparisons to methods for scaling up spectral learn-
ing. We first compare to general methods to scale
SVD, and then to sub-block selection strategies for
Hankel matrices. We end this section with a compar-
ison to state-of-the-art methods on the SPiCE bench-
mark.

In all experiments we use natural language data for
the task of language modeling. The goal is to learn
a language model that predicts the next symbol for
a sentence prefix (including ending the sentence). As
evaluation metric we use Bits per Character (BpC),
the average log-2 probability that the model gives to
each symbol in the evaluation senquences, including
sequence ends. As datasets we use the English Penn
Treebank [Marcus et al., 1994] using standard splits1,
the War and Peace dataset [Karpathy et al., 2016]2,
and the NLP datasets of the SPiCe benchmark [Balle
et al., 2016].

5.1 Scalable SVD Methods

We conducted experiments comparing our method
with two other strategies for scaling SVD. The
first uses Randomized Projections to perform SVD
[N. Halko and Tropp., 2009]. This idea was previously
used to scale spectral learning [Hamilton et al., 2013].
The second strategy is based on Sampling, and selects
the k top rows and columns that have the highest norm
[Deshpande and Vempala., 2006].

For this comparison we used the Penn TreeBank
dataset with simplified part-of-speech tags (12 sym-

149 characters; 5017k / 393k / 442k characters in the
train / dev / test portions.

284 symbols; 2658k / 300k / 300k characters in the train
/ dev / test portions.

0 200 400 600 800

1.26

1.28

1.3

1.32

1.34

1.36

time (sec.)

b
i
t
s
p
e
r
c
h
a
r
a
c
t
e
r

Matching

Complete

Random P.

Sampling

Figure 3: Comparison of Strategies for Scaling Spec-
tral Learning.

bols). We chose this dataset because it results in a rel-
atively small Hankel matrix where we can run sparse
SVD. In particular, we used moment size of T = 5,
which results in a square Hankel matrix of size 52,450,
numeric rank of 312, and structural rank of 313. Thus,
the Complete method will use run sparse SVD on this
matrix.

We present a trade-o↵ between performance (in terms
of bits-per-character) and training time of a method.
When appropriate, we generate solutions that utilize
di↵erent amounts of time. For Sampling, since it se-
lects k rows and columns proportional to their norm, a
natural way of generating di↵erent solutions is to vary
k. For Randomized Projections we do not select a sub-
block, instead we project the Hankel matrix to a lower
`-dimensional space and then the SVD is performed
on the projected matrix. Thus to get performance as
a function of training cost we can change the size of
the projection.

The training time3 of a method consists of: (1) time
spent in selecting the Hankel sub-block (for algorithms
that start by sub-block selection (e.g. best matching);
(2) time spent on computing the singular value decom-
position; and (3) time spent computing inverses, i.e.
recovering operators. Notice that all spectral methods
will perform SVD of a Hankel sub-block. Whenever
we compute SVD we take the cost of the most e�cient
(i.e. sparse or full SVD) to be the cost of the algorithm.
Another important observation is that the sparse SVD
algorithm takes as a parameter the number of singu-
lar values to compute. We take this to be the optimal
number of states found using the validation data.

Figure 3 shows the trade-o↵, for the four methods.
The first observation is that with su�cient amount

3All experiments were run on a 2.2 GHz Intel Core pro-
cessor.

Ariadna Quattoni, Xavier Carreras, Matthias Gallé

of computational time both Random Projections and
Sampling achieve the same performance as using the
Complete Hankel. This is expected since by setting
k and ` su�ciently large we should always obtain the
same result as using the complete Hankel. Random
Projections seems to be significantly better than Sam-
pling in terms of speed up, and it can obtain the same
solution as Complete in less than 1/4 of the time.
Best Bipartite Matching obtains a slightly higher bits-
per-character than Random Projections, but is signif-
icantly more e�cient. More precisely, to achieve the
same performance as with Matching, Random Projec-
tions requires about 50 times more time.

5.2 Sub-block Selection Strategies for
Spectral Methods

We now present an empirical comparison between the
most prevalent sub-block selection strategies for spec-
tral learning.

We train spectral language models at character level
that use a fixed window of T characters both at train-
ing and test time. At training, we collect all substrings
x of length up to T . Following Balle et al. [2013], we
set a target function fT(x) to be the expected number
of times that x appears as a subsequence of a random
sentence sampled from training. We run the spectral
algorithm with fT and obtain a WA. At test, we run
the WA to compute the probability of the next char-
acter given a sliding prefix of length T � 1.

We compare maximum matching sub-block selection
to three strategies: full block, random cuts, and length
up-to. Full block uses all substrings of the support of
fT as prefixes and su�xes. Random Cuts follows Balle
et al. [2012]: it samples a string x of the support, and
chooses a random cut of x into a prefix and su�x,
which are added to the sub-block. This process is re-
peated until the sub-block reaches size k (a parame-
ter). Length ` selects all substrings up to length
`.

Table 1 compares sub-block selection methods in terms
of the numeric rank of the sub-matrix, the time it takes
to compute an n-rank factorization, and the quality of
the resulting n-state WA in terms of bits per charac-
ter (BpC). n is a parameter that we tune on validation
data with a range of values up to the rank of the sub-
matrix. The matching sub-block obtains results that
are very close to using the full matrix. However, it is
much faster: the time to compute a matching is neg-
ligible, and the time to factorize the matrix is three
orders of magnitude faster. Compared to other strate-
gies, the matching sub-block is the most accurate and
the most compact, and thus it is drastically faster.
This improvement is achieved because it selects a very

Table 1: Comparison Between Sub-block Selection
Methods for Support Strings up to Size T = 5

method size rank sec. BpC

Full 144,378 - 18,000 1.735
Matching 1,661 1,612 8 1.741
Random Cuts 1⇥ 1,661 739 10 2.011
Random Cuts 2⇥ 3,322 807 74 1.828
Random Cuts 3⇥ 4,983 902 163 1.812
Random Cuts 4⇥ 6,664 989 271 1.791
Random Cuts 5⇥ 8,305 1,010 302 1.769
Random Cuts 6⇥ 9,966 1,086 411 1.761
Random Cuts 7⇥ 11,627 1,114 825 1.752
Length 2 861 92 2 3.105
Length 3 7,455 417 290 2.662
Length 4 38,314 907 3,500 1.856

Table 2: Results of spectral models for increasing
length of strings in the support

Penn Treebank War and Peace (Lik)

T Full Match. Full Match. KJL16

5 1.735 1.741 1.377 1.405 1.451
6 1.623 1.653 1.326 1.393 1.339
7 1.597 1.622 1.323 1.369 1.321

compact sub-block (of size 1,661) that has approxi-
mately full numeric rank (rank is 1,612). In contrast,
using Random Cuts, a block of the same size as the
matching sub-block (1,661) has only a rank of 739,
which results in lower quality predictions. When in-
creasing the block of Random Cuts up to 7 times the
size of the matching, we obtain a rank of 1,114 and
very close results to the matching and full sub-blocks;
however, factorizing the sub-matrix is 100 times more
costly. Sub-block selection by maximum length also
performs poorly. This last result is evidence that long-
range statistical dependencies exist in this data, and
these are not captured by small moments. On the
other hand, a brute-force approach to capture such
long range dependencies is prohibitive. Our method
clearly o↵ers a very competitive solution.

Next we present results of models trained on larger
substrings, of up to size 7, for the Penn Treebank and
War and Peace datasets. Table 2 compares the per-
formance of the matching sub-block to using the full
block.4 As we increase the size of the substrings (T)
the models get better. There is always a performance

4For the War and Peace data, we measure performance
in terms of test negative log-likelihood, such that we can
compare to published results.

Maximum Bipartite Matching for Spectral Learning

Table 3: Results on NLP Datasets of SPiCe Sequence Prediction Competition.

Verbs LM (words) LM (characters) POS Normalization All

RNN-P *0.6078* *0.5434* *0.8101* *0.6573* *0.5882* *0.6414*
COMBO-NN-1 0.5794 0.5014 0.7632 0.6331 0.5181 0.5990
COMBO-B 0.5514 0.4264 0.7978 0.5890 0.3843 0.5498
LSTM 0.5123 0.4034 0.7630 0.5941 0.4187 0.5383
COMBO-Sp 0.5273 0.4148 0.6142 0.6235 0.4990 0.5358
Sp-BM 0.5928 0.4998 0.7820 0.6356 0.5441 0.6109

gap between using the full or the matching blocks,
however the matching sub-block scales much better:
the cost of computing a matching is negligible (less
than 15 seconds), and the cost of the factorization is
at three orders of magnitude faster. Table 2 also com-
pares to the results by Karpathy et al. [2016] (noted
KJL16), in terms of negative log-likelihood on test
characters (noted Lik). We report their results, cor-
responding to non-recurrent feed-forward neural mod-
els, which condition each prediction on the T �1 latest
characters (see Table 2 of their paper). The results are
fairly comparable, exhibiting the same trend.

5.3 Comparison with State-of-the-Art

In order to compare the performance of our proposed
method to other state of the art methods for sparse se-
quence modeling, we run experiments on the five NLP
datasets of the SPiCe sequence prediction competition
[Balle et al., 2016]. The task of the competition was
the following: given a string (prefix) of symbols in
a finite alphabet the goal is to predict a ranking of
possible next symbols to be the next element of the
sequence. The metric used for evaluation measures
the average ranking that the model gives to the cor-
rect next symbol.5 Both validation and test sets are
available from the challenge website.

There were a total of 26 teams implementing a wide
range of methods, including: many di↵erent types of
neural network models, boosting, spectral and classi-
cal state-merging algorithms for learning weighted au-
tomaton, and ensemble methods that combined several
techniques.

Table 3 shows results for the top 5 teams of the com-
petition. The top team (RNN-P) is a novel RNN ar-
chitecture where the state vector is augmented with
an indicator vector representing the previous ngram
in the history. The second best team (COMBO-NN)
is an ensemble of MLP, CNN, LSTM and ngram mod-
els. The third team (COMBO-B) is also an ensemble

5We refer the reader to the SPiCe benchmark website:
http://spice.lif.univ-mrs.fr.

method of ngram, spectral, RNN and tree boosting.
The fourth team (LSTM) is an RNN with LSTM cells
and the fifth team (COMBO-Sp) is another ensemble
method that combines a spectral model with ngram
models.

The performance of our spectral method with the pro-
posed sub-block selection using best bipartite match-
ing (Sp-BM) is given in the last row. We indicate
with bold and stars the top performing method for
each dataset and with bold the second best. Run-
ning the proposed algorithm out-of-the-box and with-
out any model combination we get a very competitive
performance: second best overall (0.6414 vs 0.6109)
and second in 3 out of 5 datasets. One of the most
attractive properties of our method is that the most
costly training times (those corresponding to datasets
with Hankel matrices of higher structural rank) were
less than 5 minutes.

6 CONCLUSIONS

We presented a novel strategy for scaling spectral
learning algorithms that is specifically designed for
modeling long range dependencies in sparse sequence
functions. The main idea is to use maximal bipartite
matching to find a Hankel sub-block of maximal struc-
tural rank. Our experiments on a real sequence model-
ing task show that: (1) Exploiting large Hankel matri-
ces is essential for the success of spectral learning algo-
rithms; and that: (2) Our proposed sub-block selection
strategy to handle large Hankel matrices can be much
faster than using sparse SVD over the complete Hankel
matrix without a significant loss in performance. Our
algorithm leads to a very appealing trade-o↵ between
computational complexity and model performance.

References

Animashree Anandkumar, Daniel J. Hsu, and
Sham M. Kakade. A method of moments for mix-
ture models and hidden markov models. In Shie
Mannor, Nathan Srebro, and Robert C. Williamson,
editors, Proceedings of the 25th Annual Conference

Ariadna Quattoni, Xavier Carreras, Matthias Gallé

on Learning Theory (COLT), volume 23 of JMLR
Proceedings, pages 33.1–33.34. JMLR.org, 2012.

R. Bailly, F. Denis, and L. Ralaivola. Grammatical
inference as a principal component analysis problem.
In Proc. ICML, 2009.

B. Balle, X. Carreras, F.M. Luque, and A. Quattoni.
Spectral learning of weighted automata: A forward-
backward perspective. Machine Learning, 2013.

Borja Balle, Ariadna Quattoni, and Xavier Carreras.
Local loss optimization in operator models: A new
insight into spectral learning. In ICML ’12, 2012.

Borja Balle, Rémi Eyraud, Franco M. Luque, Ariadna
Quattoni, and Sicco Verwer. Results of the sequence
prediction challenge (spice): a competition on learn-
ing the next symbol in a sequence. In Proceedings of
the 13th International Conference on Grammatical
Inference, 2016.

A. Beimel, F. Bergadano, N.H. Bshouty, E. Kushile-
vitz, and S. Varricchio. Learning functions repre-
sented as multiplicity automata. JACM, 2000.

J. W. Carlyle and M A. Paz. Realizations by stochas-
tic finite automata. Journal of Computer Systems
Science, 1971.

François Denis, Mattias Gybels, and Amaury Habrard.
Dimension-free concentration bounds on hankel ma-
trices for spectral learning. Journal of Machine
Learning Research, 17(31):1–32, 2016. URL http:

//jmlr.org/papers/v17/14-501.html.

A. Deshpande and S. Vempala. Adaptive sampling and
fast low-rank matrix approximation. RANDOM 06,
2006.

J. Edmonds. Systems of distinct representatives and
linear algebra. Journal of Research of the National
Bureau of Standards, 71B(4):241–245, 1967.

M. Fliess. Matrices de Hankel. Journal de
Mathématiques Pures et Appliquées, 1974.

William L. Hamilton, Mahdi M. Fard, and Joelle
Pineau. Modelling sparse dynamical systems with
compressed predictive state representations. In
Proceedings of the 30th International Conference
on Machine Learning (ICML-13), pages 178–186.
JMLRWorkshop and Conference Proceedings, 2013.

A.J. Ho↵man and S. T. McCormick. A fast algorithm
that makes matrices optimally sparse. Technical Re-
port 13, Stanford University Systems Optimization
Laboratory Report, 1982.

John E. Hopcroft and Richard M. Karp. An n5/2 algo-
rithm for maximum matchings in bipartite graphs.
SIAM Journal on Computing, 2(4):225–231, 1973.

D. Hsu, S. M. Kakade, and T. Zhang. A spectral algo-
rithm for learning hidden markov models. In Proc.
of COLT, 2009.

H. Jaeger. Observable operator models for discrete
stochastic time series. Neural Computation, 12:
1371–1398, 2000.

Andrej Karpathy, Justin Johnson, and Fei-Fei Li. Vi-
sualizing and understanding recurrent networks. In
ICLR Workshop Track, 2016.

Mitchell P. Marcus, Beatrice Santorini, and Mary A.
Marcinkiewicz. Building a large annotated corpus
of english: The penn treebank. Computational Lin-
guistics, 19, 1994.

P.G. Martisson N. Halko and J. A. Tropp. Finding
structure with randomness: Stochastic algorithms
for constructing aproximate matrix decompositions.
arXiv: 0909.4061, 2009.

R. Peeters. The maximum edge biclique problem is
np-complete. Discrete Applied Mathematics, 2003.

M. P. Schützenberger. On the definition of a family of
automata. Information and Control, 1961.

Joao C. Setubal. Sequential and parallel experimental
results with bipartite matching algorithms, 1996.

Sajid Siddiqi, Byron Boots, and Geo↵rey J. Gor-
don. Reduced-rank hidden Markov models. In Pro-
ceedings of the Thirteenth International Conference
on Artificial Intelligence and Statistics (AISTATS-
2010), 2010.

Eric Wiewiora. Learning predictive representations
from a history. In Proceedings of the 22nd interna-
tional conference on Machine learning, pages 964–
971. ACM, 2005.

Supplementary Material: A Maximum Matching Algorithm

for Basis Selection in Spectral Learning

Ariadna Quattoni and Xavier Carreras and Matthias Gallé

Xerox Research Centre Europe (XRCE)
Meylan, France

{ariadna.quattoni,xavier.carreras,matthias.galle}@xrce.xerox.com

This is supplementary material to the paper by Quat-
toni et al. [2017].

A Experimental Validation of the

Weak Matching Property

Ideally, we would not have to assume the match-

ing property and instead we could provide theoretical
guarantees for the maximum gap between the struc-
tural and numeric rank of a matrix. Unfortunately,
because of the discrete nature of the structural rank,
deriving useful bounds for this gap has been shown
to be a hard theoretical challenge Ho↵man and Mc-
Cormick [1982]. Thus to provide validation for our
assumption we resorted to an empirical evaluation of
the gap on a wide range of sequence modeling datasets.
For each dataset we do the following:

1. Compute the corresponding Hankel Matrix for a
certain moment size T .

2. Compute the structural rank and a corresponding
max-matching sub-matrix.

3. Compute the numeric rank of the max-matching
sub-matrix.

Table 1 shows the results. We observe that for all
datasets the percentual gap is small. We thus con-
clude that, in practice, the weak matching property is
a reasonable assumption in real data.

B Synthetic Experiments for the Fast

Augmenting Path Algorithm

A theoretical analysis of the Fast Augmenting Path
Algorithm (presented in Section 4 of the main paper)
is challenging. While each iteration is never worse than
the baseline iteration (the checks can be done in time
O
�
|E|

�
assuming a bitset implementation of sets), it

may well be that none of the shifted pairs are free, and

therefore only add computation without improving the
matching.

We therefore compared its execution time empirically
on synthetic data. Random sequences were gener-
ated with di↵erent alphabet size, and di↵erent average
length (we sampled from a Gaussian distribution with
a variance of 0.5). The respective times are plotted
in Figure 1 for di↵erent alphabet sizes (|⌃|) and mean
lengths (µlength).

The proposed solution is always better, with increased
speed-up with increasing mean length (the average
speed-up over all plots goes from 1.18 to 2.66), and
with a smaller slope. Both implementations are prob-
ably sub-optimal and done in python. However, we be-
lieve these conclusions carry on to more sophisticated
implementations, as any improvement will a↵ect both
versions (arguably not equally, as the baseline runs the
augmenting path procedure more often).

References

A.J. Ho↵man and S. T. McCormick. A fast algorithm
that makes matrices optimally sparse. Technical Re-
port 13, Stanford University Systems Optimization
Laboratory Report, 1982.

Ariadna Quattoni, Xavier Carreras, and Matthias
Gallé. A maximum matching algorithm for ba-
sis selection in spectral learning. In Proceedings of

the 20th International Conference on Artificial In-

telligence and Statistics (AISTATS), volume 54 of
JMLR Proceedings, 2017.

Manuscript under review by AISTATS 2017

Table 1: Empirical measure of the gap between structural and numerical rank of Hankel matrices.

Data Type Source T Hankel Size S-Rank N-Rank

NLP (character level LM) Penn Treebank 7 1,007,128 13,956 12,475
NLP (simplified PoS tags) Penn Treebank 5 52,450 313 312
NLP (character level LM) War and Peace 7 1,215,705 26,815 24,305
NLP (English verbs) SPiCe 7 52,474 3,845 3,130
NLP (character level LM) SPiCe 7 922,539 13,823 12,363
Biology (protein family PF1385) SPiCe 6 1,492,673 9,179 9,117
NLP (spanish simplified POS tags) SPiCe 7 581,217 17,951 16,480
Biology (protein family PF00400) 6 SPiCe 1,260,878 9,082 8,931
NLP (text normalizarion) SPiCe 7 348,274 32,277 26,054

0.00

0.05

0.10

0.15

0.20

0.25
|�| = 5, µ

length

= 10

0.00
0.05
0.10
0.15
0.20
0.25
0.30

|�| = 15, µ
length

= 10

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

|�| = 25, µ
length

= 10

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

|�| = 5, µ
length

= 30

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

|�| = 15, µ
length

= 30

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

|�| = 25, µ
length

= 30

50
0

10
00

20
00

30
00

40
00

50
00

0.0

0.5

1.0

1.5

2.0
|�| = 5, µ

length

= 40

50
0

10
00

20
00

30
00

40
00

50
00

0.0

0.5

1.0

1.5

2.0

2.5
|�| = 15, µ

length

= 40

50
0

10
00

20
00

30
00

40
00

50
00

0.0

0.5

1.0

1.5

2.0

2.5
|�| = 25, µ

length

= 40

Figure 1: Average and standard deviation (10 iterations) of the time spent for the baseline (in blue) and our
proposed solution (in red). x-axis is the number of sequences, y-axis time in seconds.

