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Abstract. Encoding structural information in low-dimensional vectors
is a recent trend in natural language processing that builds on distributed
representations [13]. However, although the success in replacing struc-
tural information in final tasks, it is still unclear whether these dis-
tributed representations contain enough information on original struc-
tures. In this paper we want to take a specific example of a distributed
representation, the distributed trees (DT) [16], and analyze the reverse
problem: can the original structure be reconstructed given only its dis-
tributed representation? Our experiments show that this is indeed the
case, DT can encode a great deal of information of the original tree,
and this information is often enough to reconstruct the original object
format.

1 Introduction

Typical Natural Language Processing methods are designed to produce a dis-
crete, symbolic representation of the linguistic analysis. While this type of rep-
resentation is natural to interpret, specially by humans, it has two main limita-
tions. First, as a discrete structure, it is not immediately clear how to compute
similarities between different structures. Second, it is not immediate to exploit
such discrete linguistic representations in downstream applications. Thus, when
dealing with discrete structures, one needs to define similarity measures and
features that are appropriate for the application at hand.

Recently there has been a great deal of research on the so-called distribu-
tional representations [13]. These approaches represent linguistic annotations as
vectors in d-dimensional spaces. The aim of these methods is that similarity
across different annotations will be directly captured by the vector space: sim-
ilar linguistic constructs should map to vectors that are close to each other. In
other words, the Euclidean distance is meant to provide a similary measure.
Because such d-dimensional vectors aim to capture the essence of the linguistic
structure, one can use them directly as inputs in downstream classifiers, thus
avoiding the need of feature engineering to map a discrete structure to a vector
of features. Word embeddings [11] are a prominent example of this trend, with
many succesful applications. Noticeably, in the recent years there has been a
large body of work about modelingq semantic composition using distributional
representations [14, 2, 12, 3, 4, 8, 18].

Stemming from distributed representations [13], real valued vectors have been
also used to represent complex structural information such as syntactic trees.



Distributed Trees [16] are low-dimensional vectors that encode the feature space
of syntactic tree fragments underlying tree kernels [5]. The main result behind
this method is that the dot product in this low-dimensional vector space approx-
imates tree kernels. In other words, the tree kernel between two syntactic trees
(which computes tree similarity by looking at all subtrees) can be approximated
by first mapping each tree into a low-dimensional distributed tree, and then
computing the inner product. Thus, distributed trees can be seen as a compres-
sion of the space of all tree fragments down to a d-dimensional space, preserving
tree similarity. Since the vector space representing distributed trees captures
tree similarity (in the tree kernel sense), it must be that such vectors are good
representations of syntactic structures. This hypothesis has been confirmed em-
pirically in downstream applications for question classification and recozniging
textual entailment [16].

However, a legitimate question is: what is exactly encoded in these vectors
representing structural information? And, more importantly, is it possible to de-
code these vectors to recover the original tree? Auto-encoders from the neural
network literature, such as those used to induce word embeddings, are designed
to be able to encode words into vectors and decode them. Syntactic trees, how-
ever, are structures that are far more complex.

In this paper, we propose a technique to decode syntactic trees from a vector
representation based on distributed trees. We pose the problem as a parsing
problem: given a sentence, and a reference vector representing its syntactic tree,
what is the syntactic tree that is most similar to the reference vector? Our
solution is based on CKY, and the fact that we can compute the similarity
between a partial tree and the reference vector representing the target tree.

In experiments we present a relation between the number of dimensions of
the distributed tree representation and the ability to recover parse trees from
vectors. We observe that, with sufficient dimensionality, our technique does in
fact recover the correct trees with high accuracy. This confirms the idea that
distributed trees are in fact a compression of the tree. Our methodology allows
to direclty evaluate the compression rate at which trees can be encoded.

The rest of the paper is organized as follows: first we will give a brief back-
ground on Distributed Trees and then we will explore the process of going back
from this representation to a symbolic one, we will introduce the famous CYK
algorithm and then present our variant of it that deals with distributed trees.
Finally, we will present an experimental investigation of this new algorithm, and
we will then conclude with a few remarks and plans on possible direction of
future works.

2 Background: Encoding Structures with Distributed
Trees

Encoding Structures with Distributed Trees [16] (DT) is a technique to embed
the structural information of a syntactic tree into a dense, low-dimensional vec-
tor of real numbers. DT were introduced in order to allow one to exploit the



modelling capacity of tree kernels [5] but without their computational complex-
ity. More specifically for each tree kernel TK [1, 6, 15, 9] there is a corresponding
distributed tree function [16] which maps from trees to vectors:

DT: T → Rd

t 7→ DT(t) = t

such that:

〈DT(t1),DT(t2)〉 ≈ TK(t1, t2) (1)

where t ∈ T is a tree, 〈·, ·〉 indicates the standard inner product in Rd and
TK(·, ·) represents the original tree kernel. It has been shown that the quality
of the approximation depends on the dimension d of the embedding space Rd.

To approximate tree kernels, distributed trees use the following property
and intuition. It is possible to represent subtrees τ ∈ S(t) of a given tree t in
distributed tree fragments DTF(τ) ∈ Rd such that:

〈DTF(τ1),DTF(τ2)〉 ≈ δ(τ1, τ2) (2)

Where δ is the Kronecker’s delta function. Hence, distributed trees are sums of
distributed tree fragments of trees, that is:

DT(t) =
∑
τ∈S(t)

√
λ
|N (τ)|

DTF(τ)

where λ is the classical decaying factor in tree kernels and N (τ) is the set of the
nodes of the subtree τ . With this definition, the property in Eq. 1 holds.

Distributed tree fragments are defined as follows. To each node label n we
associate a random vector n drawn randomly from the d-dimensional hyper-
sphere. Random vectors of high dimensionality have the property of being quasi-
orthonormal (that is, they obey a relationship similar to 2). The following func-
tions are then defined:

DTF(τ) =
⊙

n∈N (τ)

n

where � indicates the shuffled circular convolution operation 3, which has the
property of preserving quasi-orthonormality between vectors.

To compute distributed trees, there is a last function SN(n) for each node
n in a tree t that collects all the distributed tree fragments of t where n is the
head. This is recursively defined as follows:

SN(n) =

{
0 if n is terminal

n�
⊙

i

√
λ [ni + SN(ni)] otherwise

3 The circular convolution between a and b is defined as the vector c with component
ci =

∑
j ajbi−j mod d. The shuffled circular convolution is the circular convolution

after the vectors have been randomly shuffled.



where ni are the direct children of n in the tree t. Hence, distributed trees can
also be computed with the more efficient equation:

DT(t) =
∑
n

SN(n)

We now have all the equations to develop our idea of reconstructing trees
from distributed trees. The fact that the approximation can get arbitrarily good
with the increasing of the dimension of the vector space suggests that the vector
DT(t) encodes in fact all the information about the tree t,. However, it is not
immediately obvious how one could go about using this encoded information to
recreate the symbolic version of the parse tree.

3 Going back: reconstructing symbolic trees from vectors

Our aim here is to investigate if the information stored in the distributed tree
correctly represent trees. The hypothesis is that this is a correct representation
if we can reconstruct original trees from distributed trees.

We treated the problem of reconstructing trees as a parsing problem. Hence,
given the distributed tree DT(t) representing a syntactic tree of a given sentence
s, we want to show that starting from s and DT(t) is possible to reconstruct
t More formally, given a sentence s and its parse tree t, we use the following
information in order to try to reconstruct t:

– the sentence s itself;
– the distributed vector of the tree: t = DT(t);
– a big context-free grammar G for English that generates also t.

To solve the problem we implemented a variant of the CYK algorithm that
uses the information contained in the vector to guide the reconstruction of the
original parser among all the possible parses of a given sentence. In the next
section we will first give a brief recap on the CYK algorithm, and later we will
present our variant.

3.1 Standard CYK algorithm

The CYK algorithm is one of the most efficient algorithms for parsing context-
free grammars. It takes as input a sentence s = a1, a2, . . . , an and a context-free
grammar G in Chomsky-Normal Form, that is, each rule is of one of these two
forms:

A→ B C

A→ w

where A,B,C are non-terminal symbol and w is a terminal symbol (a word).
The grammar itself is composed of a list of symbols R1R2, . . . , Rr among which
there is a subset RS of starting symbols.



In its most common form the CYK algorithm works by constructing a 3-
dimensional table P , where the cell P [i, j, k] contains a list of all the ways that
the span from word i to word j could be obtained from the grammar symbol
Rk. Moreover, each rule is also linked to its children nodes: in this way it is
possible to navigate the table P and reconstruct a list of possible parse trees for
the original sentence.

Pijk = [Rk → A1 B1, Rk → A2 B2, . . .]

Collectively, in the cell P [i, j] are stored all the possible derivations that could
span the sentence from word i to word j.

The CYK algorithm has subsequently been extended in various forms in order
to deal with probabilistic grammars and be able thus to retrieve the k-best parse
trees of a given sentence. Our proposal is similar in this intent, but instead of
a k-best list of parse trees, it uses a beam search at each cell, guided by the
distributed vector of the sentence that we want to reconstruct. In the following
section we expose our algorithm.

3.2 CYK over Distributed Trees

In our variant of the algorithm we use the information encoded in the distributed
vector (t) of the parse tree of the sentence to guide the new parsing stage in the
following manner: in each cell P [i, j] we store not just a list of ways to obtain
the rule active at the moment, instead, we store a list L of the m-best entire
partial trees built up to that point, ordered by their similarity with t.

More in detail, when we are in the cell P [i, j] for all rules r in the grammar
of the form A→ B C, we check for all trees that we already built in P [k, j] and
P [i− k, j+ k] that starts with B → • • and C → • •, respectively. Let’s call LB
and LC these two lists, each composed of at most m trees. We create then the
list LBC composed of at most m2 trees that have A as root, a subtree from LB
as left child and one coming from LC as right child. For each one of these trees
t` we compute:

score =
〈SN(t`), t〉
〈DTF(r), t〉

We then sort the list LBC in decreasing order according to score and store only
the first m trees.

The pseudocode for our algorithm (also including the more advanced exten-
sion presented in the next section) is presented in (alg. 1).

As we do not store each possible parse tree it may happen that this algorithm
will fail to recognize a sentence as belonging to the grammar, when this happens
we can either flag the result as a fail to reconstruct the original parse tree, or try
again increasing the value of m. In our experiment we decided to flag the result
as an error, leaving the possibilities of increasing m to further experimentation.



Algorithm 1 CYK, DTK variant

Input: sentence s = w1, w2, . . . , wn, grammar G, distributed vector t
1: Initialization: fill an n× n table P with zeroes
2: for i = 1 to n do
3: for all symbol A ∈ G do:
4: rule ← (A→ wi)

5: ruleScore ← 〈SN(rule),t〉
‖SN(rule)‖

6: append (rule, ruleScore) to P [i, 0]
7: end for
8: sort P [i, 0] decreasingly by score
9: take the first m element of P [i, 0]

10: end for
11: for i = 2 to n do
12: for j = 1 to n− i + 1 do
13: for k = 1 to i− 1 do
14: for all pairs (B → • •, C → • •) ∈ P [k, j]× P [i− k, j + k] do
15: for all rule (A→ B C) ∈ G do

16: ruleScore ← 〈DTF(rule),t〉
‖DTF(rule)‖

17: if ruleScore ≥ threshold then
18: tree ← A→ [B → • •, C → • •]
19: score ← 〈DT(tree), t〉
20: append (tree, score) to P [i, j]
21: end if
22: end for
23: end for
24: end for
25: sort P [i, j] decreasingly by score
26: take the first m element of P [i, j]
27: end for
28: end for
29: if P [n, 1] is not empty then
30: return P [1, n]
31: else
32: return Not parsed
33: end if



3.3 Additional rules

In order to increase both efficiency and accuracy, we introduced a few more rules
in our algorithm:

– a filter: in this way we don’t cycle through all the rules in the grammar
but only on those with a score more then a given threshold. Such score is
computed again as a similarity between the rule r (viewed as a tree) and t:

rulescore =
〈DTF(r), t〉
‖DTF(r)‖

the threshold is defined as:
λ

3
2

p

The significance of this threshold is the following: first recall that DTK is
an approximation of TK, which in turn is a weighted count of common

subtrees between two trees. The numerator λ
3
2

p is then the exact score (not

an approximation) that a rule would get if it appeared exactly once in the
whole tree, while the parameter p > 1 relaxes the requirement by lowering
this threshold, in order to take in account the fact that we are dealing with
approximated scores. In other words, the rules that pass this filter are those
that should appear at least one time in t, with some room to account for
approximation error.

– a reintroduction of new rules to avoid the algorithm getting stuck on the
wrong choice: that is, after the sorting and trimming of the list of the first
m trees in each cell, we also add another m trees (again, sorted by score)
but for which the root node is different than the node of the first tree in the
cell

– a final reranking, according to the dtk between each element in our list of
final candidate, and the original tree.

4 Experiment

The pipeline of the experiment is the following:

1. Create a (non probabilistic) context-free grammar G from the input file.
This is just a collection of all the production rules (either terminal or not)
that appear in the input file

2. For each tree t in the testing set:

(a) compute the distributed vector DT(t);
(b) parse the sentence using the CYK algorithm as explained in section (4)

and (5);
(c) check if the resulting parse tree is equal to the original one;

3. Compute average labeled precision, recall, and f-score for the entire dataset.



4.1 Setup

As testbed for our experiment we used the Wall Street Journal section of the
PennTree Bank. Sections 00 to 22 have been used to generate the grammar. Note
that the generated grammar is not a probabilistic one, nor there is any learning
involved. Instead, it is just a collection of all the rules that appear in parse trees in
those sections, more precisely the resulting grammar contains 95 (non-terminal)
symbols and 1706 (non-terminal) production rules. The test has been performed
on section 23, consisting of a total of 2389 sentences. As a preprocessing step
we also first binarise each tree in the PTB so that the resulting grammar is in
Chomsky Normal form.

There are four parameters in our model that can be changed: a first set of pa-
rameters pertains to the DTK encoding, while another set of parameters pertains
to the CYK algorithm. The parameter relative to the DTK are the dimension
d of the distributed trees, for which we tried the values of 1024, 2048, 4096, 8192
and 16384, and the parameter λ for which we tried the values 0.2, 0.4, 0.6, 0.8.

For the second set of parameter instead we have m, which is the size of the
list of best trees that are kept at each stage and p which is the threshold of
the filter. For the parameter m we tried the values up to 10 but found out that
increasing this value doesn’t increase the performance of the algorithm, while
at the same time increasing significantly the computational complexity. For this
reason we fixed the value of this parameter to 2, and only report results relative
to this value. Finally, for the filter threshold we tried values of p = 1.5, 2 and
2.5. In the following section we report the results for the given parameters on
the test set.

4.2 Results

In this section we report our results on the dataset. In table (1) we report the
percentage of exactly reconstructed sentences. The parameter λ is kept fixed at
0.6, while the dimension d and filter p vary. The same results are also presented
in figure (1).

In table (2) we report the average precision and recall on the entire dataset
for different values of p, fixed λ = 0.6, and varying the dimension d. In figure
(2) we graph the f-measure relative to those same parameter.

As we can see the number of correctly reconstructed sentences grows signif-
icantly with the increasing of the dimension (as expected) topping at 92.79%
for d = 16384, p = 2.5 and λ = 0.6. On the other hand lower values of d while
yielding a low percentage of reconstructed sentences, still can provide a high
precision with value as low as 1024 resulting in a precision of 0.89.

In conclusion it seems that the main parameter to influence the algorithm
is the dimension d, which was what we expected, because the quality of the
approximation depends on d, and thus the amount of information that can be
stored in DT(t) without too much distortion. The parameter p on the other hand
does not seem to influence the final results nearly as much. As we can see in the



p 1.5 2 2.5

d = 1024 22.26% 23.5% 23.25%

d = 2048 48.8% 60.46% 52.32%

d = 4096 77.9% 81.39% 75.58%

d = 8192 91.86% 88.28% 87.5%

d = 16384 92.59% 92.54% 92.79%

Table 1: Percentage of correctly reconstructed sentences. λ = 0.6

p 1.5 2 2.5

d = 1024 0.89 0.78 0.71

d = 2048 0.964 0.912 0.85

d = 4096 0.984 0.967 0.951

d = 8192 0.994 0.994 0.99

d = 16384 0.995 0.995 0.994

(a) precision

p 1.5 2 2.5

d = 1024 0.285 0.43 0.477

d = 2048 0.58 0.754 0.78

d = 4096 0.846 0.923 0.929

d = 8192 0.959 0.959 0.967

d = 16384 0.965 0.965 0.976

(b) recall

Table 2: Average precision and recall. λ = 0.6



Fig. 1: Average F-measure on the entire dataset as the dimension increase. λ =
0.6

tables the results, especially for high dimension d are nearly the same for all the
values of p that we tried.



5 Conclusion and future work

We showed under our setting that it is possible to reconstruct the original parse
tree from the information included in its distributed representation. Together
with the work on distributed representation parsing [17] we envision that it would
be possible to create a symbolic parse tree of a sentence from any distributed
representation, not necessarily derived directly from the correct parse tree, but
which may be learned in some other way, for example as output of a neural
network approach.

As for future work we plan to expand the experimental investigation on a
more ample dataset, moreover we also want to use a more state-of-the art imple-
mentation of the CYK algorithm both to increase the speed of the algorithm and
in order to lift the limitation that all the trees (including those in the grammar)
should be in Chomsky Normal Form. Finally, we want to explore our approach
in a task-based setting as [10] and [7].
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