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Abstract

Encoding linguistic information in distributed representations is a strong and
promising trend in Natural Language Processing. In fact, these distributed
representations are vectors or tensors which are successfully used in learning over
linguistic data. Distributed representations are linguistic representations ready
to be used as feature vectors. However, this success starts to pose legitimate
questions: what is exactly concealed in these distributed representations? And
more importantly, is it possible to decode distributed representations to recover
back the encoded linguistic information?

In this paper, we propose decoders to invert very complex encoding functions:
the distributed tree encoders [1] which embed trees in low dimensional vectors
without learning. As these functions are not invertible per se, we treated this
problem as a parsing problem. Hence, we propose two classes of decoders based
on parsing algorithms: one for binary trees based on CYK and one for general
trees based on CYK+. Experiments show that, with a sufficient dimensionality,
the encoding-decoding process has a high accuracy.

1. Introduction

Encoding linguistic information in vectors, matrices, or high order tensors
is a strong and promising trend in Natural Language Processing. Dictionaries
are replaced by collections of distributional vectors [2] or word embeddings [3].
The meaning of sentences is represented in vectors or in tensors computed by
compositional distributional semantic models [4, 5, 6, 7, 8] or by deep learning
models such as recursive neural networks [9, 10, 11]. And, finally, syntactic
structures have been encoded in distributed representations without learning
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[12]. Hence, components of these vectors or tensors may encode the essence of
linguistic information: semantic properties of words [13] as well as structural
information for sentences.

Looking at linguistic information as vectors is very attractive when learning
functions over linguistic data. In fact, these vectors capture the essence of
linguistic information and can be directly used as inputs in downstream learning
functions, thus, avoiding the need of feature engineering to map a discrete
structure to a vector of features. Hence, in this way, Long-Short Term Memories
(LSTMs) are obtaining astonishing results in many high level semantic tasks [14,
15] and support vector machines [16] can start to exploit structural information
in very large datasets [12, 17]. In fact, vectors encoding syntactic structures are
sufficient to approximate symbolic convolution kernels in kernel machines [12].

However, a legitimate question arises: what is exactly concealed in these
vectors representing encoded linguistic information? And more importantly, is it
possible to decode these vectors to recover back the linguistic information? As in
the first surge of deep learning methods and distributed representations, decoding
vectors to extract back linguistic information is becoming an important issue.
Distributed representations have been originally designed to store information
[18]. Hence, it should be possible to encode information as well as decode it
back.

In this paper, we propose decoders to invert very complex encoding functions:
the distributed tree encoders [1] which embed trees in low dimensional vectors
without learning. As these functions are not invertible per se, we treated this
problem as a parsing problem. Hence, we propose two classes of decoders based
on parsing algorithms: one for binary trees and one for general trees. We
introduced the first decoder based on the CYK algorithm in [19]. In this paper,
we generalize the approach to general trees in two new ways: (1) by using a
binarizer and a debinarizer along with the first decoder; and, (2) by adapting
CYK+ [20, 21] that is an algorithm for parsing general context free grammars in
a probabilistic setting. Experiments show that, with a sufficient dimensionality,
the encoding-decoding process has a high accuracy.

The rest of the paper is organized as follows. Section 2 gives a brief background
on encoding and decoding symbolic information in vectors and tensors. Section 3
introduces the Distributed Trees as our encoder for trees in vectors. Section 4
revises the model for binary trees that is based on the CYK parsing algorithm
which is used for Chomsky Normal Form probabilistic grammars and describes
two new models to deal with general trees, one based on the CYK algorithm
followed by a process of debinarization, and one based on the CYK+ algorithm.
Finally, Section 5 presents an experimental investigation of these decoders, and
Section 6 then concludes with a few remarks and plans on possible directions for
future work.

2. Related Work

Representing observations in vectors or tensors is a classic idea in machine
learning. In fact, before learning or before applying learned functions, observa-
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tions are mapped in vector or tensor spaces, often called feature spaces. In some
cases, such as kernel machines [16], the mapping is implicit but nonetheless the
learning machine operates in such vector space.

In neural network approaches, and in deep learning, this way of representing
observations is even more evident and these vectors or tensors take the name of
distributed representations [22]. The important fact is that functions mapping
observations to distributed representations are generally learned from data. This
research line is called representation learning [23]. This aspect is different from
the distributed tree encoders we use in this article, which are not learned.

Yet, there is a general need to understand what is in these distributed
representations as they appear to be mysterious. Generally, distributed rep-
resentations stored in neural networks are somehow represented with pictures.
This results in a very clear explanation when these networks represent chunks
of images (for example, [24, 25]). Yet, they are a little bit more obscure when
linguistic phenomena are represented. For example, in [15], the effect of the
network on the observation is depicted as the degree of correlation between word
pairs. This is interesting but is not extremely evocative.

Hence, there is a very interesting line of research that investigates ways to
invert the encoding process. Auto-encoders [26] are a first noticeable example
on the importance of demonstrating that distributed representations store in-
formation in low-dimensional spaces. In fact, auto-encoders are simple neural
networks whose objective function is to maximize the ability of the network to
reproduce a given input as output. Yet, auto-encoders are generally encode and
decode symbols as single units. For example, eat(John, apple) is treated as a
single symbol even if it is made up of parts.

Pollack [9] proposed recursive auto-encoders applied to trees, which make
use of encoding operations in a recursive way. These were defined along a
reconstruction (or decoding) component, that maps the resulting vectors back
to their structure. This reconstruction component is used as part of the learn-
ing objective, and assumes that the structure of the tree is available: thus it
reconstructs the identities of the nodes in the tree. In contrast, in this article,
we present decoding methods for distributed tree representations that do not
assume access to the structure of the tree. In other words, we parse distributed
vectors. More recently Socher et al. have also proposed recursive auto-encoders
for parse trees [10], but they do not focus in recovering trees out of the encoded
vectors.

Holographic distributed representations instead aim to encode flat structures.
In general, these representations have been used to encode logical propositions
such as the above eat(John, apple). In this case, each part has an associated
vector and the vector for the compound is obtained by combining these vectors.
The major concern here is to build encoding functions that can be decoded, that
is, having a representation for eat(John, apple) it is possible to retrieve the parts
by inverting the encoding function.

In these holographic representations, parts are represented as vectors in
N(0, 1dId) and the composition function is called circular convolution ⊗, that is
a function derived from signal processing. Given two vectors a and b, circular
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convolution is defined as follows:

zj = (a⊗ b)j =

n−1∑
k=0

akbj−k

where subscripts are modulo n. A way to approximate the inverse of ⊗ is circular
correlation ⊕ defined as follows:

cj = (z⊕ b)j =

n−1∑
k=0

zkbj+k

where again subscripts are modulo n. In the decoding with ⊕, parts of the
structures can be derived in an approximated way, that is:

(a⊗ b)⊕ b ≈ a

For example, having the vectors e, J, and a for eat, John and apple, respectively,
the following encoding and decoding produces a vector that approximates the
original vector for John:

J ≈ (J⊗ e⊗ a)⊕ (e⊗ a)

Holographic representations have severe limitations as it is possible to encode
and decode only simple flat structures. These representations are based on
the circular convolution function which is commutative. Hence, parts in larger
structures risk to be confused as the order is not taken into consideration.

Distributed trees [1] have shown that the principles expressed in holographic
representation can be applied to encode larger structures. These distributed
trees are encoding functions that transform trees into low-dimensional vectors
containing the encoding of the substructures of the tree. Thus, these distributed
trees are particularly attractive as they can be used to represent structures in
linear learning machines which are computationally efficient.

However, distributed trees are not easily invertible.

3. Encoding Structures with Distributed Trees

Distributed Trees (DT) [1] are dense, low-dimensional vectors of real numbers
which embed structural information of trees, specifically they embed the subtrees
of a given tree. No learning is required to define distributed trees. These vectors
have been introduced to reduce the computational complexity of learning with
tree kernels [27]. Yet, this technique is extremely important for its representation
power: an highly expressive embedding without any need of learning.

Encoders for DTs are functions that map trees to vectors: each type of tree
kernel (TK) [28, 29, 30, 31] defines a particular decomposition of a tree into
subtrees, and thus each has its associated encoding function into distributed
trees An encoding function takes the following form:

DT: T → Rd

t 7→ DT(t) = t
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such that:
〈DT(t1),DT(t2)〉 ≈ TK(t1, t2) (1)

where t ∈ T is a tree, 〈·, ·〉 indicates the standard inner product in Rd and
TK(·, ·) represents the original tree kernel.

t1 S(t1) DT (t1) ∈ Rd

t2 S(t2) DT (t2) ∈ Rd

Figure 1: The idea behind Distributed Trees

The intuitive idea of why these encoders approximate tree kernels is depicted
in Figure 1. Given two trees, t1 and t2, and their respective sets of subtrees
S(t1) and S(t2), a tree kernel TK(t1, t2) performs a weighted count of common
subtrees, that is, trees in S(t1) ∩ S(t2). Encoders of Distributed Trees pack sets
S(t1) and S(t2) in small vectors. In the illustration of Figure 1, this idea is
conveyed by packing images of subtrees in small spaces, that is, the boxes under
DT (t1) and DT (t2). By rotating and coloring subtrees, pictures in the boxes
still allow to recognize these subtrees. Consequently, it seems to be possible to
count how many subtrees are similar by comparing the picture in the box under
DT (t1) with the one under DT (t2). In Distributed Trees, boxes correspond to
vectors of fixed dimensionality, and sets of subtrees are represented in these
vectors.

More formally, encoders for distributed trees embed the space of the tree
fragments in a smaller space by defining the set of distributed tree fragments. In
fact, it is possible to represent subtrees τ ∈ S(t) of a given tree t in distributed
tree fragments DTF(τ) ∈ Rd such that:

〈DTF(τ1),DTF(τ2)〉 ≈ δ(τ1, τ2) (2)

where δ is the Kronecker’s delta function. Hence, distributed tree fragments
approximate the orthonormal base of the corresponding tree kernels in the
smaller space Rd. Consequently, distributed trees are sums of distributed tree
fragments of trees, that is:

DT(t) =
∑
τ∈S(t)

√
λ
|N (τ)|

DTF(τ) (3)

5



where λ is the standard decaying factor in tree kernels and N (τ) is the set of
the nodes of the subtree τ . With this definition, the property in Eq. 1 holds [1].

Distributed tree fragments (DTF) carry a lot of interesting structural infor-
mation as they are defined recursively.

Let N be the set of node labels in trees. To each node label n ∈ N we
associate a random vector n drawn from the d-dimensional hypersphere. Given
a tree fragment τ , let N (τ) be the set of nodes occurring in τ . The encoding
function for τ will pack the vectors associated with N (τ).

Random vectors of high dimensionality have the property of being quasi-
orthonormal (that is, they obey a relationship similar to 2). Then, we recursively
combine these random vectors with the shuffled circular convolution operation1,
which has the property of preserving quasi-orthonormality between vectors. DTF
are recursively defined as follows:

DTF(τ) =

{
n if τ is a terminal node n

n� [
⊙

iDTF (τi)] otherwise

where n is the head node of the tree fragment τ , n is the vector representation
for that node, and τi are the direct children of n in τ .

The recursive definition of the distributed tree fragments allows to introduce
a fast and linear algorithm to compute distributed trees. First, we will slightly
abuse notation in the following way. We will assume a fixed tree t and use n to
refer both to a node of t and to the subtree of t headed by n itself. In accordance,
we will use ni to denote one subtree that is direct children of n in t, and the bold
versions n and ni will denote the vectors associated with the corresponding node
labels of such subtrees. Let us define a recursive function SN(n) that collects
all the distributed tree fragments τ of t that start at n, computes the vector
representation DTF(τ) of each τ , and aggregates such vectors. The function is
as follows:

SN(n) =

{
0 if n is terminal

n�
⊙

i

√
λ [ni + SN(ni)] otherwise

(4)

where ni are the direct children of n in the tree t. With this recursive function,
the distributed tree encoder DT(t) defined in Eq. 3 can be computed as the sum
of the function SN(n) over all the nodes n of the tree t:

DT(t) =
∑

n∈N(t)

SN(n) (5)

where N(t) is the set of nodes of t.
Hence, distributed tree encoders are fast and effective ways to encode trees

in small vectors. The approximation can get arbitrarily good by increasing the

1The circular convolution between a and b is defined as the vector c with component
ci =

∑
j ajbi−j mod d. The shuffled circular convolution is the circular convolution after the

vectors have been randomly shuffled.

6



dimension of the vector space. Thus, the vector DT(t) encodes the information
about the tree t. However, it is not immediately obvious how one could go about
using this encoded information to recreate the symbolic version of the parse
tree.

4. Decoding Distributed Trees: Reconstructing Symbolic Trees from
Vectors

Distributed tree encoders are powerful functions which represent trees in
small vectors, but are these encoders invertible? Is it possible to reconstruct
trees encoded in distributed trees? This is an important question as the answer
may show that distributed trees can be an interpretable mapping of syntactic
trees in distributed representations. Hence, distributed trees are attractive
representations to be used as the interface between learning models and syntactic
structure, especially when interpreting parts of the learning model is relevant.

Our main contribution is to propose decoders to invert functions that encode
trees in distributed trees. As these functions are not invertible per se, we treat
this problem as a parsing problem. That is, we are given a sentence s with a
distributed tree t = DT(t), and the goal is to reconstruct the original tree t. To
do so the parsing method will use a large context-free grammar G that defines
the space of trees. From now on we will assume a fixed grammar G and sentence
s, and we will denote a decoder as a function DT−1(t).

We propose two classes of decoders based on parsing algorithms: one for
binary trees and one for general trees. We introduced the first decoder based
on the CYK algorithm in [19]. In this paper, we generalize the approach to
general trees in two new ways: (1) by using a binarizer and a debinarizer along
with the first decoder; and, (2) by adapting CYK+ that is an algorithm for
parsing general context free grammars in a probabilistic setting. One benefit
of using CYK to decode distributed trees is that the recursive computations
for distributed trees SN(n) and DT(t) in equations 4 and 5 factorize across the
CYK chart. This means that the best partial trees at each CYK cell can be
stored as distributed trees, to be augmented during the bottom up process.

The rest of the section is organized as follows. Section 4.1 revises the model
for binary trees that is based on the CYK parsing algorithm which is used for
Chomsky Normal Form probabilistic grammars. Section 4.2 describes two new
models to deal with general trees, one based on the CYK algorithm followed
by a process of debinarization, and one based on the CYK+ algorithm [20, 21]
which has been introduced for general probabilistic context free grammars.

4.1. Decoders for Binary Trees

This section revises our first decoder DT−1B (t) for distributed trees DT (t) = t
that deals only with binary trees. We presented this solution in [19]. This first
decoder was implemented as a variant of a probabilistic version of the CYK
algorithm (see [19] for more details on the CYK algorithm). Instead of the
probabilities of parsing rules, our decoder uses the information contained in
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Figure 2: Parsing Example

distributed trees to guide the reconstruction of the original parse tree among all
the possible parse trees of a given sentence.

In the rest of the section, we first describe our variant of the CYK algorithm
applied to distributed trees and, then, we report on some additional rules that
we introduced to improve the computational efficiency of the decoder.

4.1.1. CYK over Distributed Trees

CYK is one of the most efficient algorithms for parsing context-free grammars
in Chomsky-Normal Form, that is, with rules of the form A → B C and
A→ w. In its most common form the CYK algorithm works by constructing a
2-dimensional table P , where the cell P [i, j] contains the symbols of the trees
that can cover the span from word j to word i + j − 1. For example, Figure
2 depicts the table P for the sentence “I saw the man with the telescope” and
P[2,6] contains VP as, according to the grammar G, this symbol is the head
of some trees covering “saw the man with the telescope”. In the probabilistic
version of CYK, each cell P [i, j] contains the k-most-probable parse trees.

Our decoder DT−1B (t) is based on the CYK algorithm and uses the information
encoded in the distributed tree DT(t) = t to guide the parsing which aims to
reconstruct trees t from sentences s. The idea is simple: instead of using rule
and subtree probabilities to guide the parsing, we seek whether candidate rules
r or reconstructed subtrees t` in a cell are in the distributed tree DT(t) = t.
The rationale is as follows. Assume that a production rule r appears once in the
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target tree t, then the dot product between the distributed tree of r and t is:

〈DTF(r), t〉 ≈ λ 3
2

as rules are trees with 3 nodes. If r occurs c times in t then the dot product will
approximately be c times the above quantity, and in particular if the rule does
not occur in t, the dot product will be zero. More generally, if t` is a candidate
reconstructed partial tree that occurs in the target tree t, then the dot product
with t is:

〈SN(t`), t〉 ≈
∑

τ∈S(t`))

λ
|N(τ)|

2

as SN(t`) represents the sum of the vectors of the subtrees of t` rooted in its root.
Hence, we use the following score to drive the choice of the m-best reconstructed
trees t` in each cell P [i, j]:

score(t`, t) =
〈SN(t`), t〉
〈DTF(r), t〉

This score is 1 if t` is a rule occurring in t, and is around 1 if t` is a subtree of t.
More formally, the pseudocode for our algorithm is presented in Alg. 1. The

key steps are in 16-18 where candidate trees and candidate rules are selected.
When we are in the cell P [i, j] for all rules r in the grammar of the form A→ B C,
we check for all trees that we already built in P [j, k] and P [j+k, i−k] that starts
with B → • • and C → • •, respectively. Let us call these two lists LB and LC ,
each composed of at most m trees. We create then the list LBC composed of at
most m2 trees that have A as root, a subtree from LB as the left child and one
coming from LC as the right child. For each one of these trees t` we compute
score(t`, t). We then sort the list LBC in decreasing order according to score
and store only the first m trees. For example, in Fig. 2, we want to reconstruct
the tree:

S

NP

I

VP

VP

V

saw

NP

DET

the

N

man

PP

P

with

NP

DET

the

N

telescope

given the sentence “I saw the man with the telescope” and the grammar G. In
this case, in the cell P (2, 6) we store two trees t1 and t2, to which correspond
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two distributed vectors that we use to score and sort the trees. We have that
score(t1, t) < score(t2, t), and so it is more probable that t2 will lead us to the
correct interpretation of the sentence.

Algorithm 1 CYK, DTK variant

Input: sentence s = w1, w2, . . . , wn, grammar G, distributed vector t
1: Initialization: fill an n× n table P with zeroes
2: for i = 1 to n do
3: for all symbol A ∈ G do:
4: rule ← (A→ wi)

5: ruleScore ← 〈SN(rule),t〉
‖SN(rule)‖

6: append (rule, ruleScore) to P [i, 0]

7: sort P [i, 1] decreasingly by score
8: take the first m element of P [i, 1]

9: for i = 2 to n do
10: for j = 1 to n− i+ 1 do
11: for k = 1 to i− 1 do
12: for all pairs (B → • •, C → • •) ∈ P [j, k]× P [j + k, i− k] do
13: for all rule (A→ B C) ∈ G do

14: ruleScore ← 〈DTF(rule),t〉
‖DTF(rule)‖

15: if ruleScore ≥ threshold then
16: tree ← A→ [B → • •, C → • •]
17: score ← 〈DT(tree), t〉
18: append (tree, score) to P [i, j]

19: sort P [i, j] decreasingly by score
20: take the first m element of P [i, j]

21: if P [1, n] is not empty then
22: return P [1, n]
23: else
24: return Not parsed

Unfortunately, the decoder may fail to reconstruct the tree. In fact, as we
do not store each possible candidate tree in each cells, it may happen that this
algorithm will fail to recognize a sentence as belonging to the grammar. Hence,
we need some heuristic rules to better drive the reconstruction/parsing and, in
the meantime, keeping the complexity low.

4.1.2. Improving Computational Efficiency and Accuracy with Heuristic Rules

To control the execution time and giving the possibility to increase the m-best
list of candidate subtrees, we introduced a filter that filters out useless rules.
The filter (see line 14 of Alg. 1) avoids to cycle on every rule of the grammar and
focuses the search on promising rules, which are in the distributed tree. Such
score is computed again as a similarity between the rule r (viewed as a tree) and
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t:

rulescore(r, t) =
〈DTF(r), t〉
‖DTF(r)‖

the threshold (line 15) is defined as:

λ
3
2

p

The numerator λ
3
2 represents the exact score (not an approximation) that a rule

would get if it appeared exactly once in the whole tree, while the parameter
p > 1 relaxes the requirement by lowering this threshold, in order to take in
account the fact that we are dealing with approximated scores.

To control the quality and to give better chances to the algorithm to retrieve
a parse tree, we introduced two strategies: (1) the introduction of a constraint
which augments the variability of the tree roots in cell; and (2) a final reranking
of the extracted trees. The first strategy aims to avoid the algorithm getting
stuck on the wrong choice. Hence, after the sorting and trimming of the list of
the first m trees in each cell, we also add another m trees (again, sorted by score)
but for which the root node is different than the node of the first tree in the cell.
The second strategy instead is a final reranking of the solutions. Candidate trees
tc in the final list are reranked according to this simple score:

score(tc, t) = 〈DT(tc), t〉

The performance of the decoder will then depend on: the size d of the space
encoding distributed trees as vectors in Rd, the parameter p to select rules with
rulescore(r, t) and m of the m-best trees retained in a cell. We evaluated these
parameters in the experimental section.

4.2. Decoding General Trees

The decoder revised in the previous section has a severe problem: it works
only on binary trees. This is a limitation as natural language parse trees are
usually not binary, and must therefore be artificially binarized.

The main innovation of this paper is to introduce two decoders that can
decode with general trees. The first approach is very simple and uses the
previous binary distributed tree decoder. In the encoding phase, general trees
are binarized before the application of the distributed tree encoder. In the
decoding phase, the binary distributed tree decoder retrieves binary trees from
distributed trees and, then, a debinarizer is applied. The second approach is a
dedicated algorithm that decodes general trees from distributed trees encoding
generic trees.

In the following, we will report on both these approaches.

4.2.1. Debinarizing Reconstructed Trees

Our first decoder on generalized trees DT−1G1(t) is a straightforward extension
of what we did before, the decoder on binarized tree DT−1B (t). In fact, the

11



decoder DT−1B (t) is obtained with a debinarizer B−1 applied in cascade to the
decoder for binary distributed trees:

DT−1G1(t) = B−1(DT−1B (t))

where B−1(t) is a debinarizer. Given B(t) as the binarizing function, the overall
process to encode and decode a general tree is the following:

t 7→ B(t) 7→ DTB(B(t)) = B(t) 7→ B−1(DT−1B (B(t))) = t

The debinarization is achieved with the same model that produces the binary
trees and is a lossless deterministic process.

4.2.2. Decoders for General Trees with CYK+

Our second decoder on generalized trees DT−1G2(t) is instead designed to
natively treat general trees. In fact, general trees are encoded with the distributed
tree encoder as they are and, then, the decoder DT−1G2(t) extract back trees with
no need of reworking.

To define the decoder, we adapted the CYK+ algorithm [20] to exploit
information stored in distributed trees.

CYK+ is an algorithm for parsing with general probabilistic context-free
grammars which uses a matrix structure P to store partial parses. The matrix
of CYK+ is richer than the one of CYK. Each cell P [i, j] has two disjoint lists
of items: (1) Complete Rules; and, (2) Incomplete Rules. The Complete Rules
are rules of the form:

A→ B1 B2 . . . Bn

that parse the span subtended by the cell, that is, the words: wj . . . wi+j−1.
For brevity, an element of this type will be represented by the non-terminal in
the left side, A, keeping in mind that the algorithm can keep track of all the
partial derivation via backpointers, just as in the standard CYK algorithm. The
Incomplete Rules are strings of non-terminal symbols:

[B1, B2, . . . , Bn]

that again span wj . . . wi+j−1 and for which there exist a rule in the grammar
of the form

A→ B1 B2 . . . Bn β

where β is a non-empty string of non-terminal symbols. In other words, the
second list contains partial subtrees that could be completed into entire parse
trees later on in the parsing algorithm. An element of this type will be indicated
with α•, where α is representing [B1, B2, . . . , Bn].

The main operations of CYK+ on a given cell P [i, j] of the matrix P are
two: the completer and the self-filler. The completer wants to find new (possibly
partial) rules for each cell P [i, j]. Hence, it seeks the combinations that could
form a new (possibly partial) rule in the cells P [j, k] and P [j+ k, i− k] (see lines
31-48 of Alg. 2). More precisely, an incomplete rule α• in P [j, k] is combined
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Figure 3: Parsing Example

with a complete rule B in P [j + k, i− k] if there is a rule in the grammar of the
form A→ αBγ, where γ is a (possibly empty) list of non terminal symbols. If γ
is empty the rule A represents a complete rule and is thus placed into the list of
complete rules of the active cell, otherwise the sequence αB• is put in the list of
incomplete rules to be expanded later (if possible). The self-filler is instead a
procedure needed to deal with unary rules (see lines 50-64 of Alg. 2). For each
complete rule of the form B in the active cell P [i, j] the procedure looks in the
grammar for rule A→ Bγ. If γ is empty, this new rule A is put back into the
same list, otherwise B• is put into the list of incomplete rules.

An example on how the CYK+ works is given in Figure 3. The completer
fills the cell P [1, 7] with S as the cell P [1, 4] contains the incomplete rule [PRP
VP •] and the cell P [5, 3] contains the complete rule [PP]. These two rules can
be combined together with the complete rule S → PRP VP PP. In the example
we can also see how in each cell we store entire subtrees for each type of rule.

Our second decoder DT−1G2(t) on generalized trees then extends CYK+ adding
the ranking of the complete rules and incomplete rules in a cell using distributed
trees. The principle is the same, the decoder seeks in distributed trees whether or
not the rule or the incomplete rule exists by using the dot product. Yet, seeking
incomplete rules in the distributed tree is fairly more complex as incomplete
rules are not directly encoded. What is in the distributed trees is a complete
rule or a partial tree. Then, this is what we can find. Hence, we need to derive
which complete rules or subtrees are implied by the list of incomplete rules in a
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cell P [i, j]. This list is of the form:

L = [α•, β•, . . . , ζ•]

where each element is itself a list of non terminal symbols (together with its own
subtrees) which represents a partial rule. Moreover, for each α• = [t1, t2, . . . , tn],
there exists rules Rj in the grammar of the form Rj → αβ. Hence, α• will
receive a score according to the following equation:

score(α•) = max
Rj

scorerule(Rj) ·
1

n

∑
i

scoretree(ti)√
#nodes(ti)

where Rj ranges over all the rules that could complete α•, and whose score is
defined as:

scorerule(R) =
〈DTF (R), t〉
λ

#nodes(R)
2

and scoretree(t) is instead the score of the entire subtree:

scoretree(ti) = 〈DTK(ti), t〉

The score is used in line 69 of the Alg. 2. In words, we are scoring a partial rule
by the average of the score of its constituent trees, multiplied by the maximum
possible score among all the rules that could complete it. The rest of the scoring
functions are similar to what done for the decoder on binary trees. Similarly to
the decoder for binary trees the performance of the algorithm will depends on
3 parameters: the dimension d in which we embed the distributed vectors, the
threshold parameter p and the number m of trees that we store in each cell.
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Algorithm 2 CYK+ DTK variant

Input: sentence s = w1, w2, . . . , wn, grammar G, distributed vector t
1: Initialization: fill an n× n table P with zeroes
2: for i = 1 to n do
3: for all symbol A ∈ G do:
4: rule ← (A→ wi)

5: ruleScore ← 〈SN(rule),t〉
‖SN(rule)‖

6: append (rule, ruleScore) to completeList of P [i, 1]

7: sort P [i, 1].completeList decreasingly by score
8: take the first m element of P [i, 1].completeList

9:

10: for all tree T → • ∈ P [i, 1].completeList do:
11: for all rule (A→ T γ) ∈ G do:
12: divide between complete and incomplete rules:
13: if γ is empty then:
14: A→ T is a complete rule
15: else:
16: [T] is an incomplete rule

17:

18: for all complete rule A→ T do:
19: tree← A→ [T → •]
20: score ← 〈SN(tree), t〉
21: append (tree, score) to P[i, 1].completeList

22:

23: if there is at least one incomplete rule A→ T α then:
24: append [T → •] to P[i,1].incompleteList

25:

26: sort P [i, 1].completeList decreasingly by score
27: take the first m element of P [i, 1].completeList
28:

29: for i = 2 to n do
30: for j = 1 to n− i+ 1 do
31: for k = 1 to i− 1 do
32: Partial ← P[j, k].incompleteList
33: Complete ← P[j+k,i-k].completeList
34: for all pairs ([B1, B2, . . . , Bn], C) ∈ Partial× Complete do:
35: for all rule (A→ B1 B2 . . . Bn C γ) ∈ G do:
36: divide between complete and incomplete rules:
37: if γ is empty then:
38: A→ B1 B2 . . . Bn C is a complete rule
39: else:
40: [B1 B2 . . . Bn C] is an incomplete rule

41:

42: for all complete rule (A→ B1 B2 . . . Bn C) do:
43: tree← A→ [B1 B2 . . . Bn C]
44: score ← 〈SN(tree), t〉
45: append (tree, score) to P[i, j].completeList

46:

47: if there is an incomplete rule (A→ B1 . . . Bn C γ) then:
48: append [B1 B2 . . . Bn C] to P[i,j].incompleteList
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49: for all tree T → • ∈ P [i, j].completeList do:
50: for all rule (A→ T γ) ∈ G do:
51: divide between complete and incomplete rules:
52: if γ is empty then:
53: A→ T is a complete rule
54: else:
55: [T] is an incomplete rule

56:

57: for all complete rule A→ T do:
58: tree← A→ [T → •]
59: score ← 〈SN(tree), t〉
60: append (tree, score) to P[i, j].completeList

61:

62: if there is at least one incomplete rule A→ T α then:
63: append [T → •] to P[i,j].incompleteList

64:

65: sort P [i, j].completeList decreasingly by score
66: take the first m element of P [i, j].completeList
67: sort P [i, j].incompleteList decreasingly by score
68: take the first m element of P [i, j].incompleteList

69:

70: if P [1, n] is not empty then
71: final reranking by dtk
72: return P [1, n]
73: else
74: return Not parsed
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5. Experiments

With the 3 different decoders we proposed (DT−1B , DT−1G1 and DT−1G2 ) there
is the possibility of building encoding-decoding chains for trees which transforms
trees in distributed trees and back. The experiments in this section investigate
if these chains are lossless. Hence, we want to determine whether tree encoders
preserve the information so that decoders can extract back trees.

To investigate if encoding-decoding chains are lossless, we performed two
different sets of experiments: one for the binary encoder-decoder chain and one
for the general encoder-decorer chain. In the first set, we binarized the entire
dataset beforehand (and thus we will only ever work with a binary grammar and
binary parse trees). In the second set, we instead explored the two aforementioned
ways to deal with a dataset of trees as they are produced by the parser. In both
experiments, we assessed the methodology with richer trees containing words
and with poorer trees containing numbers as terminal symbols. This was useful
to understand if these encoding-decoding chains are affected by the sparseness
of the symbols.

In the rest of the section, first, we describe the experimental setup and, then,
we report on the results of the experiments.

5.1. Experimental Setup

As our aim was to experiment with natural language parse trees, we used
the Penn Treebank [32], namely, the WSJ section. Even if this is not a “parsing”
experiment, we used the standard split as we need sections to generate the credible
large grammar for the two underlying parsing algorithms. Hence, we used sections
00 to 22 to generate the grammar G and section 23 for testing consisting of a
total of 2, 389 sentences. The generated grammar is not a probabilistic one, nor
there is any learning involved. Instead, it is just a collection of all the rules
that appear in parse trees in those sections. We generated two grammars: (1) a
binary grammar for DT−1B that contains 95 (non-terminal) symbols and 1706
(non-terminal) production rules; (2) a general grammar for DT−1G1 and DT−1G2

that contains 16443 different rules, ranging in complexity from unary rules like
NP → ADV P to pathological ones often composed of very long sequences of
noun phrases such as NP → NP, NP, NP, NP, NP, NP, NP CC NP .

To evaluate the encoding-decoding chains, we used the classical metrics
–labeled recall, labeled precision and labeled f-measure– along with a stricter
percentage of correctly reconstructed trees. This latter evaluation measure is
extremely demanding as it asks that trees are perfectly reconstructed. Hence, it
describes whether or not the encoding-decoding is a perfectly lossless function.

We experimented with different parameter setting to understand their role
in the encoding and decoding power of the chains. The parameters have been
reported at the end of each section describing decoders (Secs. 4.1 and 4.2). The
values we experimented with are:

• For the dimension d of the distributed trees: 1024, 2048, 4096, 8192 and
16384
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• For the threshold p of the rule filter: p = 1.5, 2 and 2.5

• For the m of the m-best solutions for each node: we tried the values
up to 10 but found out that increasing this value does not increase the
performance of the algorithm, while at the same time increasing significantly
the computational complexity. For this reason we fixed the value of this
parameter to 2 and only report results relative to this value.

Finally, in order to be ready to work in a distributed parsing setting [33] and
in line with [14] where words are not taken into consideration, we experimented
with two settings: a lexicalized setting and an unlexicalized setting. In the
lexicalized setting, binary and general trees contain words. In the unlexicalized
setting, binary and general trees contain numbers representing word positions
instead of words. This latter setting is designed to remove an unnecessary
complication. In this case, decoders deal with a reduced space of terminals
and not with the entire space of terminal rules. One simple way to achieve a
“semantic-free” tree representation is thus to just replace each word in a sentence
s with a progressive numeral number. In this way the set of terminal rules is
reduced and does not carry any semantic meaning, rather the terminal rules are
only placeholders for the position of a word in the sentence, as in [14].

5.2. Results

In this section we report our results on the dataset. We will report result
for the experiments on binary trees and general trees separately in the next
subsections.

5.2.1. Binary trees

For the binary trees we summarize the results presented in [19]. In table
(1) we report the percentage of exactly reconstructed sentences together with
precision and recall on the entire dataset. We let the dimension d vary while the
parameter λ is kept fixed at 0.6. Here we only report the value for the parameter
p fixed at 2, which provides the best results. We report the results both for the
lexicalized and unlexicalized settings.

Table 1: DT−1
B : percentage of correctly reconstructed trees, precision and recall; p = 2

d % correct trees precision recall

1024 23.5% 0.78 0.477
2048 60.46% 0.912 0.78
4096 81.39% 0.967 0.929
8192 91.86% 0.994 0.967
16384 92.54% 0.995 0.976

(a) lexicalized

d % correct trees precision recall

1024 24.2% 0.78 0.49
2048 50.6% 0.91 0.78
4096 83.2% 0.976 0.946
8192 92.4% 0.991 0.988
16384 95.8% 0.996 0.991

(b) unlexicalized

As we can see, for the experiment where words are kept the number of
correctly reconstructed sentences grows significantly with the increasing of the
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dimension (as expected) topping at 92.54% for d = 16384. On the other hand
lower values of d, while yielding a low percentage of reconstructed sentences, still
can provide a high precision with value as low as 1024 resulting in a precision of
0.78, and a top score of 0.995. Removing words increases the performance even
more, achieving a top score of 95.8% for d = 16384, and a precision of 0.91 for d
as low as 2048.

In conclusion it seems that the main parameter to influence the algorithm
is the dimension d, which was what we expected, because the quality of the
approximation depends on d, and thus the amount of information that can be
stored in DT(t) without too much distortion.

5.2.2. General trees

In this section we present similar results for the reconstruction of general
trees for both method of reconstruction. For general trees however we will
present the results in more detail: in table (2) we report the percentage of
exactly reconstructed trees for the CYK algorithm followed by debinarization,
with varying dimension and threshold parameter p and for both the lexicalized
and unlexicalized settings. Table (3) reports the same results for the CYK+
algorithm.

Table 2: DT−1
G1 : percentage of correctly reconstructed sentences

p
d 1.5 2 2.5

1024 21.0% 24.4% 19.4%
2048 37.8% 45.6% 41.8%
4096 61.2% 65.6% 60.2%
8192 69.4% 70.2% 69.8%
16384 72.4% 72.4% 72.2%

(a) lexicalized

p
d 1.5 2 2.5

1024 21.0% 25.0% 22.4%
2048 41.4% 46.4% 43.4%
4096 65.2% 66.6% 64.0%
8192 70.0% 70.4% 70.4%
16384 72.6% 72.6% 72.0%

(b) unlexicalized

Table 3: DT−1
G2 : percent of correctly reconstructed trees.

p
d 1.5 2 2.5

1024 13.8% 15.0% 13.0%
2048 30.6% 32.2% 28.2%
4096 44.2% 47.4% 44.4%
8192 54.4% 54.8% 53.8%
16384 63.0% 63.4% 63.0%

(a) lexicalized

p
d 1.5 2 2.5

1024 15.0% 18.0% 15.4%
2048 30.8% 33.8% 32.6%
4096 49.6% 52.4% 47.4%
8192 60.2% 62.4% 59.6%
16384 67.4% 68.0% 67.6%

(b) unlexicalized

In table (4) and (5) we report the average precision and recall on the entire
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Table 4: DT−1
G1 : Average precision and recall.

p
d 1.5 2 2.5

1024 0.894 0.774 0.713
2048 0.928 0.872 0.825
4096 0.96 0.942 0.917
8192 0.962 0.961 0.957
16384 0.964 0.963 0.963

(a) precision - lexicalized

p
d 1.5 2 2.5

1024 0.905 0.788 0.725
2048 0.946 0.896 0.841
4096 0.961 0.948 0.930
8192 0.963 0.960 0.957
16384 0.964 0.964 0.963

(b) precision - unlexicalized

p
d 1.5 2 2.5

1024 0.305 0.469 0.508
2048 0.539 0.743 0.766
4096 0.811 0.904 0.903
8192 0.935 0.949 0.946
16384 0.958 0.956 0.955

(c) recall - lexicalized

p
d 1.5 2 2.5

1024 0.302 0.464 0.51
2048 0.57 0.742 0.779
4096 0.845 0.914 0.918
8192 0.934 0.952 0.951
16384 0.956 0.958 0.954

(d) recall - unlexicalized

dataset for different values of p, fixed λ = 0.6, varying the dimension d, and
different reconstruction approach. Again, for each decoder we list both the case
where words are present and the case were words are removed.

We can immediately see that the general case is considerably more difficult
to tackle than the binary one, particularly using the DT−1G2 decoder. While
precision and recall are only marginally lower than the previous case, the number
of exactly reconstructed sentences drops significantly. This is probably due
to the bigger size of the search space and the fact that the algorithm has to
prune a considerable part of it at each step, moreover the process of scoring
incomplete rules in the CYK+ algorithm is more indirect and error-prone then
the scoring of complete rules, for which the dot-product readily provides the
information that we want (that is, whether a tree is a subtree of the target tree).
The general trend is the same as in the previous experiment, with increasing
performance with the increasing of dimensionality, and the parameter p not
influencing the result as much, however the results are generally lower: the top
result is achieved debinarizing the output of the CYK algorithm, where the
lexicalized and unlexicalized setting achieve similar results of 72.4% and 72.6%,
respectively. Precision and recall are instead only marginally lower: the best
results are again achieved with the debinarizing approach where the top precision
and recall achieved are 0.964 and 0.958, respectively, both for the setting with
and without words. The best recall score is achieved with the debinarizing
approach, with a top score of 0.958 in both settings. The precision instead is
higher with the CYK+ approach: the top score is 0.991 in the setting without
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Table 5: DT−1
G2 : Average precision and recall.

p
d 1.5 2 2.5

1024 0.958 0.818 0.714
2048 0.965 0.893 0.807
4096 0.981 0.96 0.918
8192 0.987 0.980 0.970
16384 0.989 0.988 0.988

(a) precision - lexicalized

p
d 1.5 2 2.5

1024 0.94 0.80 0.71
2048 0.96 0.90 0.82
4096 0.98 0.96 0.93
8192 0.99 0.99 0.98
16384 0.991 0.99 0.989

(b) precision unlexicalized

p
d 1.5 2 2.5

1024 0.181 0.360 0.434
2048 0.427 0.588 0.692
4096 0.601 0.709 0.727
8192 0.710 0.733 0.754
16384 0.801 0.804 0.819

(c) recall - lexicalized

p
d 1.5 2 2.5

1024 0.20 0.39 0.49
2048 0.43 0.63 0.71
4096 0.67 0.77 0.78
8192 0.77 0.81 0.82
16384 0.84 0.863 0.87

(d) recall unlexicalized

words, and 0.989 for the setting with words.
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6. Conclusions and Future Work

Representing linguistic information in distributed representation is a promis-
ing trend in modern Natural Language Processing approaches, which combine
machine learning models along with linguistic models.

In this paper, we investigated models to show that encoding functions of
complex linguistic information, that is syntactic trees, are invertible. We proposed
two nearly lossless chains of encoder-decoding process for syntactic trees. Hence,
distributed representations for trees are good candidates to store and represent
this kind of linguistic information.

Our results enhance the comprehension of what is the real encoding power
of these distributed representations. Thus, we shed a new light on how these
representations are used in learning models. As supposed in [34], our results
make possible to investigate the relation between distributed representations
used in learning machines and convolution kernels.

Finally, our contributions to decode distributed trees introduced in [1] open
new research avenues: exploring novel approaches to parsing. Distributed trees
may be the intermediate representation for novel learning-based parsers. The
so-called distributed representation parsers [33, 35] could finally become complete
parsers for natural language utterances.
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