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ABSTRACT

We investigate the problem of inducing word embeddings that are tailored for
a particular bilexical relation. Our learning algorithm takes an existing lexical
vector space and compresses it such that the resulting word embeddings are good
predictors for a target bilexical relation. In experiments we show that task-specific
embeddings can benefit both the quality and efficiency in lexical prediction tasks.

1 INTRODUCTION

There has been a large body of work that focuses on learning word representations, either in the form
of word clusters (Brown et al., 1992) or vectors (Sahlgren, 2006; Turney & Pantel, 2010; Mikolov
et al., 2013; Pennington et al., 2014; Baroni et al., 2014; Bansal et al., 2014) and these have proven
useful in many NLP applications (Koo et al., 2008; Turian et al., 2010).

An ideal lexical representation should compress the space of lexical words while retaining the es-
sential properties of words in order to make predictions that correctly generalize across words. The
typical approach is to first induce a lexical representation in a task-agnostic setting and then use it
in different tasks as features. A different approach is to learn a lexical representation tailored for
a certain task. In this work we explore the second approach, and employ the formulation by Mad-
hyastha et al. (2014) to induce task-specific word embeddings. This method departs from a given
lexical vector space, and compresses it such that the resulting word embeddings are good predictors
for a given lexical relation.

Specifically we learn functions that compute compatibility scores between pairs of lexical items
under some linguistic relation. In our work, we refer to these functions as bilexical operators. As
an instance of this problem, consider learning a model that predicts the probability that an adjective
modifies a noun in a sentence. In this case, we would like the bilexical operator to capture the fact
that some adjectives are more compatible with some nouns than others.

Given the complexity of lexical relations, one expects that the properties of words that are relevant
for some relation are different for another relation. This might affect the quality of an embedding,
both in terms of its predictive power and the compression it obtains. If we employ a task-agnostic
low-dimensional embedding, will it retain all important lexical properties for any relation? And,
given a fixed relation, can we further compress an existing word representation? In this work we
present experiments along these lines that confirm that task-specific embeddings can benefit both
the quality and the efficiency of lexicalized predictive models.
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2 FORMULATION

Let V be a vocabulary, and let x ∈ V denote a word. We are interested in modeling a target bilexical
relation, that is, a relation between pairs of words without context. For example, in a noun-adjective
relation we model what nouns can be assigned to what adjectives. We will denote as Q ⊆ V the set
of query words, or words that appear in the left side of the bilexical relation. And we will use C ⊆ V
to denote candidate words, appearing in the right side of the relation.

In this paper we experiment with the log-linear models by Madhyastha et al. (2014) that given
a query word q compute a conditional distribution over candidate words c. The models take the
following form:

Pr(c | q;W ) =
exp{φ(q)>Wφ(c)}∑
c′ exp{φ(q)>Wφ(c′)}

(1)

where φ : V → Rn is a distributional representation of words, and W ∈ Rn×n is a bilinear form.

The learning problem is to obtain φ and W from data, and we approach it in a semi-supervised fash-
ion. There exist many approaches to learn φ from unlabeled data, and in this paper we experiment
with two approaches: (a) a simple distributional approach where we represent words with a bag-of-
words of contextual words; and (b) the skip-gram model by Mikolov et al. (2013). To learnW we as-
sume access to labeled data in the form pairs of compatible examples, i.e. D = {(q, c)1, . . . , (q, c)l},
where q ∈ Q and c ∈ C. The goal is to be able to predict query-candidate pairs that are unseen
during training. Recall that we model relations between words without context. Thus the lexical
representation φ is essential to generalize to pairs involving unseen words.

With φ fixed, we learn W by minimizing the negative log-likelihood of the labeled data using a reg-
ularized objective, L(W ) = −

∑
(q,c)∈D log Pr(c | q;W )+τρ(W ), where ρ(W ) is a regularization

penalty and τ is a constant controlling the trade-off.

We are interested in regularizers that induce low-rank parameters W , since they lead to task-specific
embeddings. Assume that W has rank k, such that W = UV > with U, V ∈ Rn×k. If we consider
the product φ(q)>UV >φ(c), we can now interpret φ>U as a k-dimensional embedding of query
words, and φ(c)>V as a k-dimensional embedding of candidate words. Thus, if we obtain a low-
rank W that is highly predictive, we can interpret U and V as task-specific compressions of the
original embedding φ tailored for the target bilexical relation, from n to k dimensions.

Since minimizing the rank of a matrix is hard, we employ a convex relaxation based on the nuclear
norm of the matrix `? (that is, the `1 norm of the singular values, see Srebro et al. (2005)). In
our experiments we compare the low-rank approach to `1 and `2 regularization penalties, which are
common in linear prediction tasks. For all settings we use the forward-backward splitting (FOBOS)
optimization algorithm by Duchi & Singer (2009).

We note that if we set W to be the identity matrix our model scores are inner products between the
query-candidate embeddings, a common approach to evaluate semantic similarity in unsupervised
distributional approaches. In general, we can compute a low-dimensional projection of φ down to
k dimensions, using SVD, and perform the inner product in the projected space. We refer to this as
the unsupervised approach, since the projected embeddings do not use the labeled dataset specifying
the target relation.

3 EXPERIMENTS WITH SYNTACTIC RELATIONS

We conducted a set of experiments to test the performance of the learning algorithm with respect to
the initial lexical representation φ, for different configurations of the representation and the learner.
We experiment with six bilexical syntactic relations using the Penn Treebank corpus (Marcus et al.,
1993), following the experimental setting by Madhyastha et al. (2014). For a relation between
queries and candidate words, such as noun-adjective, we partition the query words into train, devel-
opment and test queries, thus test pairs are always unseen pairs.

To report performance, we measure pairwise accuracy with respect to the efficiency of the model in
terms of number of active parameters. To measure the efficiency of a model we consider the number
of double operations that are needed to compute, given a query word, the scores for all candidates
in the vocabulary. See (Madhyastha et al., 2014) for details.
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(b) Noun-Adjective
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(c) Verb-Object
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(d) Object-Verb
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(e) Subject-Verb
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(f) Verb-Subject
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Figure 1: Pairwise accuracy v/s no. of double operations to compute the distribution over candidate words for
a query word. Plots are for noun-adjective, verb-object and verb-subject relations, in both directions. The red
curves use distributional representation based on bag-of-words (BoW) and the grey curves use the embeddings
of the skip-gram model (SKG).
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`?

Rel Type UNS best k k = 5 k = 10 `2 `1

Adj-Noun BoW 85.12 85.99 (80) 83.99 84.74 85.96 85.63
SKG 73.61 91.40 (300) 83.70 86.27 91.22 90.72

Obj-Verb BoW 63.85 78.11 (200) 73.17 73.64 74.08 73.95
SKG 64.15 79.98 (50) 75.45 78.37 80.30 79.89

Subj-Verb BoW 58.20 78.13 (2) 71.71 71.73 78.07 77.97
SKG 49.65 59.28 (90) 53.31 53.32 58.24 58.67

Noun-Adj BoW 78.09 78.11 (70) 77.48 77.85 78.48 78.85
SKG 49.65 59.28 (50) 56.42 57.19 58.24 58.67

Verb-Obj BoW 66.46 73.90 (40) 73.70 73.88 73.30 73.48
SKG 64.15 79.99 (30) 77.05 78.60 80.29 79.89

Verb-Subj BoW 49.32 71.97 (30) 71.71 71.23 72.85 71.95
SKG 32.34 53.75 (2) 53.32 53.32 53.47 53.68

Table 1: Pairwise accuracies for the six relations using the unsupervised, `?, `2 and `1 models, using either a
distributional bag-of-words representation (BoW) or the skip-gram embeddings (SKG) as initial representation.
For `? we show results for the rank that gives best accuracy (with the optimal rank in parenthesis), as well as
for ranks k = 5 and 10.

We experiment with two types of initial representations φ. The first is a simple high-dimensional
distributional representation based on contextual bag-of-words (BoW): each word is represented by
the bag of words that appear in contextual windows. In our experiments these were sparse 2,000-
dimensional vectors. The second representation are the low-dimensional skip-gram embeddings
(SKG) by Mikolov et al. (2013), where we used 300 dimensions. In both cases we induced such
representations using the BLIPP corpus (Charniak et al., 2000) and using a context window of size
10 for both. Thus the main difference is that the bag-of-words is an uncompressed representation,
while the skip-gram embeddings are a neural-net-style compression of the same contextual windows.

As for the bilexical model, we test it under three regularization schemes, namely `2, `1, and `?. For
the first two, the efficiency of computing predictions is a function of the non-zero entries inW , while
for the latter it is the rank k of W , which defines the dimension of the task-specific embeddings. We
also test a baseline unsupervised approach (UNS).

4 RESULTS AND DISCUSSION

Figure 1 shows the performance of models for noun-adjective, verb-object and verb-subject relations
(in both directions). In line with the results by Madhyastha et al. (2014) we observe that the super-
vised approach in all cases outperforms the unsupervised case, and that the nuclear norm scheme
provides the best performance in terms of accuracy and speed: other regularizers can obtain similar
accuracies, but low-rank constraints during learning favor very-low dimensional embeddings that
are highly predictive.

In terms of starting with bag-of-words vectors or skip-gram embeddings, in three relations the former
is clearly better, while in the other three relations the latter is clearly better. We conclude that task-
agnostic embeddings do identify useful relevant properties of words, but at the same time not all
necessary properties are retained. In all cases, the nuclear norm regularizer successfully compresses
the initial representation, even for the embeddings which are already low-dimensional.

Table 1 presents the best result for each relation, initial representation and regularization scheme.
Plus, for the `? regularizer we present results at three different ranks, namely 5, 10 or the rank that
obtains the best result for each relation. These highly compressed embeddings perform nearly as
good as the best performing model for each relation.

Table 2 shows a set of query nouns, and two sets of neighbor query nouns, using the embeddings for
two different relations to compute the two sets. We can see that, by changing the target relation, the
set of close words changes. This suggests that words have a wide range of different behaviors, and
different relations might exploit lexical properties that are specific to the relation.
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Query noun-adjective object-verb
city province, area, island, township, freeways residents, towns, marchers, streets, mayor
securities bonds, mortgage, issuers, debt, loans bonds, memberships, equities, certificates, syndicate
board committee directors, commission, nominees, refusal slate, membership, committee, appointment, stockholder
debt loan, loans, debts, financing, mortgage reinvestment, indebtedness, expenditures, outlay, repayment
law laws, constitution, code, legislation, immigration laws, ordinance, decree, statutes, state
director assistant, editor, treasurer, postmaster, chairman firm, consultant, president, manager, leader

Table 2: Example query words and 5 highest-ranked candidate words for two different bilexical
relations: noun-adjective and object-verb.

5 CONCLUSION

We have presented a set of experiments where we compute word embeddings specific to target
linguistic relations. We observe that low-rank penalties favor embeddings that are good both in
terms of predictive accuracy and efficiency. For example, in certain cases, models using very low-
dimensional embeddings perform nearly as good as the best models.

In certain tasks, we have shown that we can refine low-dimensional skip-gram embeddings, making
them more compressed while retaining their predictive properties. In other tasks, we have shown
that our method can improve over skip-gram models when starting from uncompressed distributional
representations. This suggests that skip-gram embeddings do not retain all the necessary information
of the original words. This motivates future research that aims at general-purpose embeddings that
do retain all necessary properties, and can be further compressed in light of specific lexical relations.
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