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Abstract

We present a transition-based arc-eager
model to parse spinal trees, a dependency-
based representation that includes phrase-
structure information in the form of con-
stituent spines assigned to tokens. As a
main advantage, the arc-eager model can
use a rich set of features combining depen-
dency and constituent information, while
parsing in linear time. We describe a set
of conditions for the arc-eager system to
produce valid spinal structures. In experi-
ments using beam search we show that the
model obtains a good trade-off between
speed and accuracy, and yields state of the
art performance for both dependency and
constituent parsing measures.

1 Introduction

There are two main representations of the syntac-
tic structure of sentences, namely constituent and
dependency-based structures. In terms of statisti-
cal modeling, an advantage of dependency repre-
sentations is that they are naturally lexicalized, and
this allows the statistical model to capture a rich
set of lexico-syntactic features. The recent liter-
ature has shown that such lexical features greatly
favor the accuracy of statistical models for pars-
ing (Collins, 1999; Nivre, 2003; McDonald et al.,
2005). Constituent structure, on the other hand,
might still provide valuable syntactic information
that is not captured by standard dependencies.

In this work we investigate transition-based sta-
tistical models that produce spinal trees, a rep-
resentation that combines dependency and con-
stituent structures. Statistical models that use both
representations jointly were pioneered by Collins
(1999), who used constituent trees annotated with
head-child information in order to define lexical-
ized PCFG models, i.e. extensions of classic

constituent-based PCFG that make a central use
of lexical dependencies.

An alternative approach is to view the com-
bined representation as a dependency structure
augmented with constituent information. This ap-
proach was first explored by Collins (1996), who
defined a dependency-based probabilistic model
that associates a triple of constituents with each
dependency. In our case, we follow the representa-
tions proposed by Carreras et al. (2008), which we
call spinal trees. In a spinal tree (see Figure 1 for
an example), each token is associated with a spine
of constituents, and head-modifier dependencies
are attached to nodes in the spine, thus combin-
ing the two sources of information in a tight man-
ner. Since spinal trees are inherently dependency-
based, it is possible to extend dependency mod-
els for such representations, as shown by Carreras
et al. (2008) using a so-called graph-based model.
The main advantage of such models is that they
allow a large family of rich features that include
dependency features, constituent features and con-
junctions of the two. However, the consequence
is that the additional spinal structure greatly in-
creases the number of dependency relations. Even
though a graph-based model remains parseable in
cubic time, it is impractical unless some pruning
strategy is used (Carreras et al., 2008).

In this paper we propose a transition-based
parser for spinal parsing, based on the arc-eager
strategy by Nivre (2003). Since transition-based
parsers run in linear time, our aim is to speed
up spinal parsing while taking advantage of the
rich representation it provides. Thus, the re-
search question underlying this paper is whether
we can accurately learn to take greedy parsing
decisions for rich but complex structures such as
spinal trees. To control the trade-off, we use
beam search for transition-based parsing, which
has been shown to be successful (Zhang and Clark,
2011b). The main contributions of this paper are



the following:

• We define an arc-eager statistical model for
spinal parsing that is based on the triplet re-
lations by Collins (1996). Such relations, in
conjunction with the partial spinal structure
available in the stack of the parser, provide a
very rich set of features.

• We describe a set of conditions that an arc-
eager strategy must guarantee in order to pro-
duce valid spinal structures.

• In experiments using beam search we show
that our method obtains a good trade-
off between speed and accuracy for both
dependency-based attachment scores and
constituent measures.

2 Background

2.1 Spinal Trees

A spinal tree is a generalization of a dependency
tree that adds constituent structure to the depen-
dencies in the form of spines. In this section we
describe the spinal trees used by Carreras et al.
(2008). A spine is a sequence of constituent nodes
associated with a word in the sentence. From a
linguistic perspective, a spine corresponds to the
projection of the word in the constituent tree. In
other words, the spine of a word consists of the
constituents whose head is the word. See Figure
1 for an example of a sentence and its constituent
and spinal trees. In the example the spine of each
token is the vertical sequence on top of it.

Formally a spinal tree for a sentence x1:n is a
pair (V,E), where V is a sequence of n spinal
nodes andE is a set of n spinal dependencies. The
i-th node in V is a pair (xi, σi), where xi is the i-th
word of the sentence and σi is its spine.

A spine σ is a vertical sequence of constituent
nodes. We denote by N the set of constituent
nodes, and we use ? 6∈ N to denote a special ter-
minal node. We denote by l(σ) the length of a
spine. A spine σ is always non-empty, l(σ) ≥ 1,
its first node is always ?, and for any 2 ≤ j ≤ l(σ)
the j-th node of the spine is an element of N .

A spinal dependency is a tuple 〈h, d, p〉 that rep-
resents a directed dependency from the p-th node
of σh to the d-th node of V . Thus, a spinal de-
pendency is a regular dependency between a head
token h and a dependent token d augmented with

a position p in the head spine. It must be that
1 ≤ h, d ≤ n and that 1 < p ≤ l(σh).

The set of spinal dependencies E satisfies the
standard conditions of forming a rooted directed
projected tree (Kübler et al., 2009). Plus, E satis-
fies that the dependencies are correctly nested with
respect to the constituent structure that the spines
represent. Formally, let (h, d1, p1) and (h, d2, p2)
be two spinal dependencies associated with the
same head h. For left dependencies, correct nest-
ing means that if d1 < d2 < h then p1 ≥ p2. For
right dependents, if h < d1 < d2 then p1 ≤ p2.

In practice, it is straightforward to obtain spinal
trees from a treebank of constituent trees with
head-child annotations in each constituent (Car-
reras et al., 2008): starting from a token, its spine
consists of the non-terminal labels of the con-
stituents whose head is the token; the parent node
of the top of the spine gives information about the
lexical head (by following the head children of the
parent) and the position where the spine attaches
to. Given a spinal tree it is trivial to recover the
constituent and dependency trees.

2.2 Arc-Eager Transition-Based Parsing

The arc-eager transition-based parser (Nivre,
2003) parses a sentence from left to right in linear
time. It makes use of a stack that stores tokens that
are already processed (partially built dependency
structures) and it chooses the highest-scoring pars-
ing action at each point. The arc-eager algorithm
adds every arc at the earliest possible opportunity
and it can only parse projective trees.

The training process is performed with an ora-
cle (a set of transitions to a parse for a given sen-
tence, (see Figure 2)) and it learns the best transi-
tion given a configuration. The SHIFT transition
removes the first node from the buffer and puts
it on the stack. The REDUCE transition removes
the top node from the stack. The LEFT-ARCt tran-
sition introduces a labeled dependency edge be-
tween the first element of the buffer and the top
element of the stack with the label t. The top el-
ement is removed from the stack (reduce transi-
tion). The RIGHT-ARCt transition introduces a la-
beled dependency edge between the top element of
the stack and the first element in the buffer with a
label d, and it performs a shift transition. Each ac-
tion can have constraints (Nivre et al., 2014), Fig-
ure 2 and Section 3.2 describe the constraints of
the spinal parser.
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Figure 1: (a) A constituent tree for This market has been very badly damaged. For each constituent, the
underlined child annotates the head child of the constituent. (b) The corresponding spinal tree.

In this paper, we took the already existent im-
plementation of arc-eager from ZPar1 (Zhang and
Clark, 2009) which is a beam-search parser imple-
mented in C++ focused on efficiency. ZPar gives
competitive accuracies, yielding state-of-the-art
results, and very fast parsing speeds for depen-
dency parsing. In the case of ZPar, the parsing
process starts with a root node at the top of the
stack (see Figure 3) and the buffer contains the
words/tokens to be parsed.

3 Transition-based Spinal Parsing

In this section we describe an arc-eager transition
system that produces spinal trees. Figure 3 shows
a parsing example. In essence, the strategy we
propose builds the spine of a token by pieces, by
adding a piece of spine each time the parser pro-
duces a dependency involving such token.

We first describe a labeling of dependencies that
encodes a triplet of constituent labels, and it is the
basis for defining an arc-eager statistical model.
Then we describe a set of constraints that guaran-

1http://sourceforge.net/projects/zpar/

tees that the arc-eager derivations we produce cor-
respond to spinal trees. Finally we discuss how to
map arc-eager derivations to spinal trees.

3.1 Constituent Triplets
We follow Collins (1996) and define a labeling for
dependencies based on constituent triplets.

Consider a spinal tree (V,E) for a sentence
x1:n. A constituent triplet of a spinal dependency
(h, d, p) ∈ E is a tuple 〈a, b, c〉 where:

• a ∈ N is the node at position p of σh (parent
label)

• b ∈ N ∪ {?} is the node at position p− 1 of
σh (head label)

• c ∈ N ∪{?} is the top node of σd (dependent
label)

For example, a dependency labeled with
〈S,VP,NP〉 is a subject relation, while the triplet
〈VP, ?,NP〉 represents an object relation. Note
that a constituent triplet, in essence, corresponds
to a context-free production in a head-driven
PCFG (i.e. a→ bc, where b is the head child of a).



Initial configuration Ci = 〈[ ], [x1 . . . xn], ∅, 〉

Terminal configuration Cf ∈ {C |C = 〈Σ, [ ], A〉}

SHIFT 〈Σ, i|B,A〉 ⇒ 〈Σ|i, B,A〉

REDUCE 〈Σ|i, B,A〉 ⇒ 〈Σ, B,A〉

if ∃j, t : {j t→ i} ∈ A

LEFT-ARC(〈a, b, c〉) 〈Σ|i, j|B,A〉 ⇒ 〈Σ, j|B,A ∪ {j 〈a,b,c〉→ i}〉

if ¬∃k, t : {i t→ k} ∈ A

(1) if (c 6= ?) ∨ ¬(∃k : {i t→ k} ∈ A)

(3) if b = ? ⇒ ∀{i 〈a′,b′,c′〉→ k} ∈ A, a = a′ ∧ b = b′

RIGHT-ARC(〈a, b, c〉) 〈Σ|i, j|B,A〉 ⇒ 〈Σ|i|j, B,A ∪ {i 〈a,b,c〉→ j}〉

(1) if (c 6= ?) ∨ ¬(∃k : {j t→ k} ∈ A)

(2) if ¬(∃k, 〈a′, b′, c′〉 : {k 〈a′,b′,c′〉→ i} ∈ A ∧ c′ = ? )

(4) if b = ? ⇒ ∀{j 〈a′,b′,c′〉→ k} ∈ A such that j < k, a = a′ ∧ b = b′

(5) if b = ? ⇒ ∀{j 〈a′,b′,c′〉→ k} ∈ A such that k < j ∧ b′ = ?, a = a′

Figure 2: Arc-eager transition system with spinal constraints. Σ represents the stack, B represents the
buffer, A represents the set of arcs, t represents a given triplet when its components are not relevant,
〈a, b, c〉 represents a given triplet when its components are relevant and i, j and k represent tokens of the
sentence. The constraints labeled with (1) . . . (5) are described in Section 3.2. The constraints that are
not labeled are standard constraints of the arc-eager parsing algorithm (Nivre, 2003).

In the literature, these triplets have been shown to
provide very rich parameterizations of statistical
models for parsing (Collins, 1996; Collins, 1999;
Carreras et al., 2008).

For our purposes, we associate with each spinal
dependency (h, d, p) ∈ E a triplet dependency
(h, d, 〈a, b, c〉), where the triplet is defined as
above. We then define a standard statistical model
for arc-eager parsing that uses constituent triplets
as dependency labels. An important advantage of
this model is that left-arc and right-arc transitions
can have feature descriptions that combine stan-
dard dependency features with phrase-structure in-
formation in the form of constituent triplets. As
shown by Carreras et al. (2008), this rich set of
features can obtain significant gains in parsing ac-
curacy.

3.2 Spinal Arc-Eager Constraints

We now describe constraints that guarantee that
any derivation produced by a triplet-based arc-
eager model corresponds to a spinal structure.

Let us make explicit some properties that relate
a derivationD with a token i, the arcs inD involv-
ing i, and its spine σi:

• D has at most a single arc (h, i, 〈a, b, c〉)
where i is in the dependent position. The de-
pendent label c of this triplet defines the top
of σi. If c = ? then σi = ?, and i can not
have dependants.

• Consider the subsequence of D of left arcs
with head i, of the form (i, j, 〈a, b, c〉). In an
arc-eager derivation this subsequence follows
a head-outwards order. Each of these arcs has
in its triplet a pair of contiguous nodes b−a of
σi. We call such pairs spinal edges. The sub-
sequence of spinal edges is ordered bottom-
up, because arcs appear head-outwards. In
addition, sibling arcs may attach to the same
position in σi. Thus, the subsequence of left
spinal edges of i in D is a subsequence with
repeats of the sequence of edges of σi.

• Analogously, the subsequence of right spinal



Transition Stack Buffer Added Arc
[Root] [This, market, has, been, very, badly, damaged, .]

SHIFT [Root, This] [market, has, been, very, badly, damaged, .]

L-A(〈NP, ?, ?〉) [Root] [market, has, been, very, badly, damaged, .] market
〈NP,?,?〉−→ This

SHIFT [Root, market] [has, been, very, badly, damaged, .]

L-A(〈S,VP,NP〉) [Root] [has, been, very, badly, damaged, .] has
〈S,VP,NP〉−→ market

R-A(〈TOP, ?, S〉) [Root, has] [been, very, badly, damaged, .] Root
〈TOP,?,S〉−→ has

R-A(〈VP, ?,VP〉) [Root, has, been] [very, badly, damaged, .] has
〈VP,?,VP〉−→ been

SHIFT [Root, has,been, very] [badly, damaged, .]

R-A(〈ADVP, ?, ?〉) [Root, has, been, very, badly] [damaged, .] very
〈ADVP,?,?〉−→ badly

REDUCE [Root, has, been, very] [damaged, .]

L-A(〈VP, ?,ADVP〉) [Root, has, been] [damaged, .] damaged
〈VP,?,ADVP〉−→ very

R-A(〈VP, ?,VP〉) [Root, has, been, damaged] [.] been
〈VP,?,VP〉−→ damaged

REDUCE [Root, has, been] [.]

REDUCE [Root, has] [.]

R-A(〈S,VP, ?〉) [Root, has, .] [ ] has
〈S,VP,?〉−→ .

Figure 3: Transition sequence for This market has been very badly damaged.

edges of i in D is a subsequence with repeats
of the edges of σi. In D, right spinal edges
appear after left spinal edges.

We constrain the arc-eager transition process
such that these properties hold. Recall that a well-
formed spine starts with a terminal node ?, and so
does the first edge of the spine and only the first.
Let C be a configuration, i.e. a partial derivation.
The constraints are:

(1) An arc (h, i, 〈a, b, ?〉) is not valid if i has de-
pendents in C.

(2) An arc (i, j, 〈a, b, c〉) is not valid if
C contains a dependency of the form
(h, i, 〈a′, b′, ?〉).

(3) A left arc (i, j, 〈a, ?, c〉) is only valid if
all sibling left arcs in C are of the form
(i, j′, 〈a, ?, c′〉).

(4) Analogous to (3) for right arcs.

(5) If C has a left arc (i, j, 〈a, ?, c〉), then a right
arc (i, j′, 〈a′, ?, c〉) is not valid if a 6= a′.

In essence, constraints 1-2 relate the top of a
spine with the existence of descendants, while
constraints 3-5 enforce that the bottom of the
spine is well formed. We enforce no further con-
straints looking at edges in the middle of the spine.
This means that left and right arc operations can
add spinal edges in a free manner, without ex-
plicitly encoding how these edges relate to each
other. In other words, we rely on the statistical
model to correctly build a spine by adding left and

right spinal edges along the transition process in a
bottom-up fashion.

It is easy to see that these constraints do not pre-
vent the transition process from ending. Specif-
ically, even though the constraints invalidate arc
operations, the arc-eager process can always finish
by leaving tokens in the buffer without any head
assigned, in which case the resulting derivation is
a forest of several projective trees.

3.3 Mapping Derivations to Spinal Trees

The constrained arc-eager derivations correspond
to spinal structures, but not necessarily to sin-
gle spinal trees, for two reasons. First, from the
derivation we can extract two subsequences of left
and right spinal edges, but the derivation does not
encode how these sequences should merge into a
spine. Second, as in the basic arc-eager process,
the derivation might be a forest rather than a single
tree. Next we describe processes to turn a spinal
arc-eager derivation into a tree.

Forming spines. For each token i we depart
from the top of the spine t, a sequence L of left
spinal edges, and a sequence R of right spinal
edges. The goal is to form a spine σi, such that
its top is t, and that L and R are subsequences
with repeats of the edges of σi. We look for the
shortest spine satisfying these properties. For ex-
ample, consider the derivation in Figure 3 and the
third token has:

• Top t: S

• Left edges L: VP− S

• Right edges R: ?−VP, VP− S



In this case the shortest spine that is consistent
with the edges and the top is ?−V P − S. Our
method runs in two steps:

1. Collapse. Traverse each sequence of edges
and replace any contiguous subsequence of
identical edges by a single occurrence. The
assumption is that identical contiguous edges
correspond to sibling dependencies that at-
tach to the same node in the spine.2

2. Merge the left L and right R sequences of
edges overlapping them as much as possible,
i.e. looking for the shortest spine. We do this
in O(nm), where n and m are the lengths of
the two sequences. Whenever multiple short-
est spines are compatible with the left and
right edge sequences, we give preference to
the spine that places left edges to the bottom.

The result of this process is a spine σi with left and
right dependents attached to positions of the spine.
Note that this strategy has some limitations: (a)
it can not recover non-terminal spinal nodes that
do not participate in any triplet; and (b) it flattens
spinal structures that involve contiguous identical
spinal edges. 3

Rooting Forests. The arc-eager transition sys-
tem is not guaranteed to generate a single root
in a derivation (though see (Nivre and Fernández-
González, 2014) for a solution). Thus, after map-
ping a derivation to a spinal structure, we might
get a forest of projective spinal trees. In this case,
to produce a constituent tree from the spinal for-
est, we promote the last tree and place the rest of
trees as children of its top node.

4 Experiments

In this section we describe the performance of the
transition-based spinal parser by running it with
different sizes of the beam and by comparing it

2However, this is not always the case. For example, in the
Penn Treebank adjuncts create an additional constituent level
in the verb-phrase structure, and this can result in a series
of contiguous VP spinal nodes. The effect of flattening such
structures is mild, see below.

3These limitations have relatively mild effects on recov-
ering constituent trees in the style of the Penn Treebank. To
measure the effect, we took the correct spinal trees of the
development section and mapped them to the corresponding
arc-eager derivation. Then we mapped the derivation back to
a spinal tree using this process and recovered the constituent
tree. This process obtained 98.4% of bracketing recall, 99.5%
of bracketing precision, and 99.0 of F1 measure.

with the state-of-the-art. We used the ZPar imple-
mentation modified to incorporate the constraints
for spinal arc-eager parsing. We used the exact
same features as Zhang and Nivre (2011), which
extract a rich set of features that encode higher-
order interactions betwen the current action and
elements of the stack. Since our dependency la-
bels are constituent triplets, these features encode
a mix of constituent and dependency structure.

4.1 Data

We use the WSJ portion of the Penn Treebank4,
augmented with head-dependant information us-
ing the rules of Yamada and Matsumoto (2003).
This results in a total of 974 different constituent
triplets, which we use as dependency labels in the
spinal arc-eager model. We use predicted part-of-
speech tags5.

4.2 Results in the Development Set

In Table 1 we show the results of our parser for
the dependency trees, the table shows unlabeled
attachment score (UAS) , triplet accuracy (TA,
which would be label accuracy, LA) and triplet at-
tachment score (TAS), and spinal accuracy (SA)
(the spinal accuracy is the percentage of complete
spines that the parser correctly predicts). In or-
der to be fully comparable, for the dependency-
based metrics we report results including and ex-
cluding punctuation symbols for evaluation. The
table also shows the speed (sentences per second)
in standard hardware. We trained the parser with
different beam values, we run a number of itera-
tions until the model converges and we report the
results of the best iteration.

As it can be observed the best model is the one
trained with beam size 64, and greater sizes of the
beam help to improve the results. Nonetheless, it
also makes the parser slower. This result is ex-
pected since the number of dependency labels, i.e.
triplets, is 974 so a higher size of the beam al-
lows to test more of them when new actions are in-
cluded in the agenda. This model already provides
high results over 92.34% UAS and it can also pre-
dict most of the triplets that label the dependency

4We use the standard partition: sections 02-21 for train-
ing, section 22 for development, and section 23 for testing.

5We use the same setting as in (Carreras et al., 2008) by
training over a treebank with predicted part-of-speech tags
with mxpost (Ratnaparkhi, 1996) (accuracy: 96.5) and we
test on the development set and test set with predicted part-
of-speech tags of Collins (1997) (accuracy: 96.8).



Dep. (incl punct) Dep. (excl punct) Const Speed
Beam-size UAS TA TAS SA UAS TA TAS LR LP F1 Sent/Sec

8 91.39 90.47 88.78 95.60 92.32 91.21 89.73 88.6 88.4 88.5 7.8
16 91.81 90.95 89.28 95.84 92.70 91.65 90.21 89.0 89.1 89.1 3.9
32 92.08 91.14 89.52 95.96 92.91 91.77 90.38 89.4 89.5 89.5 1.7
64 92.34 91.45 89.84 96.13 93.12 92.04 90.65 89.5 89.7 89.7 0.8

Table 1: UAS with predicted part-of-speech tags for the dev.set including and excluding punctuation
symbols. Constituent results for the development set. Parsing speed in sentences per second (an estimate
that varies depending on the machine). TA and TAS refer to label accuracy and labeled attachment score
where the labels are the different constituent triplets described in Section 3. SA is the spinal accuracy.

arcs (91.45 TA and 89.84 TAS) (including punctu-
ation symbols for evaluation).

Table 1 also shows the results of the parser in
the development set after transforming the depen-
dency trees by following the method described in
Section 3. The result even surpasses 89.5% F1
which is a competitive accuracy. As we can see,
the parser also provides a good trade-off between
parsing speed and accuracy.6

In order to test whether the number of depen-
dency labels is an issue for the parser, we also
trained a model on dependency trees labeled with
Yamada and Matsumoto (2003) rules, and the re-
sults are comparable to ours. For a beam of size
64, the best model with dependency labels pro-
vides 92.3% UAS for the development set includ-
ing punctuation and 93.0% excluding punctuation,
while our spinal parser for the same beam size
provides 92.3% UAS including punctuation and
93.1% excluding punctuation. This means that the
beam-search arc-eager parser is capable of coping
with the dependency triplets, since it even pro-
vides slightly better results for unlabeled attach-
ment scores. However, unlike (Carreras et al.,
2008), the arc-eager parser does not substantially
benefit of using the triplets during training.

4.3 Final Results and State-of-the-art
Comparison

Our best model (obtained with beam=64) provides
92.14 UAS, 90.91 TA and 89.32 TAS in the test
set including punctuation and 92.78 UAS, 91.53

6However, in absolute terms, our running times are slower
than typical shift-reduce parsers. Our purpose is to show a re-
lation between speed and accuracy, and we opted for a simple
implementation rather than an engineered one. As one exam-
ple, our parser considers all dependency triplets (974) in all
cases, which is somehow absurd since most of these can be
ruled out given the parts-of-speech of the candidate depen-
dency. Incorporating a filtering strategy of this kind would
result in a speedup factor constant to all beam sizes.

Parser UAS
McDonald et al. (2005) 90.9
McDonald and Pereira (2006) 91.5
Huang and Sagae (2010) 92.1
Zhang and Nivre (2011) 92.9
Koo and Collins (2010)* 93.0
Bohnet and Nivre (2012) 93.0
Koo et al. (2008) †* 93.2
Martins et al. (2010) 93.3
Ballesteros and Bohnet (2014) 93.5
Carreras et al. (2008) †* 93.5
Suzuki et al. (2009) †* 93.8
this work (beam 64) †* 92.1
this work (beam 64) † 92.8

Table 2: State-of-the-art comparison for unlabeled
attachment score for WSJ-PTB with Y&M rules.
Results marked with † use other kind of infor-
mation, and are not directly comparable. Results
marked with * include punctuation for evaluation.

TA and 90.11 TAS excluding punctuation. Table
2 compares our results with the state-of-the-art.
Our model obtains comptetitive dependency accu-
racies when compared to other systems.

In terms of constituent structure, our best model
(beam=64) obtains 88.74 LR, 89.21 LP and 88.97
F1. Table 3 compares our model with other con-
stituent parsers, including shift-reduce parsers as
ours. Our best model is competitive compared
with the rest.

5 Related Work

Collins (1996) defined a statistical model for
dependency parsing based on using constituent
triplets in the labels, which forms the basis of our
arc-eager model. In that work, a chart-based al-
gorithm was used for parsing, while here we use
greedy transition-based parsing.



Beam-size LR LP F1
Sagae and Lavie (2005)* 86.1 86.0 86.0

Ratnaparkhi (1999) 86.3 87.5 86.9
Sagae and Lavie (2006)* 87.8 88.1 87.9

Collins (1999) 88.1 88.3 88.2
Charniak (2000) 89.5 89.9 89.5

Zhang and Clark (2009)* 90.0 89.9 89.9
Petrov and Klein (2007) 90.1 90.2 90.1

Zhu et al. (2013)-1* 90.2 90.7 90.4
Carreras et al. (2008) 90.7 91.4 91.1
Zhu et al. (2013)-2†* 91.1 91.5 91.3

Huang (2008) 91.2 91.8 91.5
Charniak (2000) 91.2 91.8 91.5

Huang et al. (2010) 91.2 91.8 91.5
McClosky et al. (2006) 91.2 91.8 91.5
this work (beam 64)* 88.7 89.2 89.0

Table 3: State-of-the-art comparison in the test
set for phrase structure parsing. Results marked
with † use additional information, such as semi-
supervised models, and are not directly compara-
ble to the others. Results marked with * are shift-
reduce parsers.

Carreras et al. (2008) was the first to use spinal
representations to define an arc-factored depen-
dency parsing model based on the Eisner algo-
rithm, that parses in cubic time. Our work can
be seen as the transition-based counterpart of that,
with a greedy parsing strategy that runs in linear
time. Because of the extra complexity of spinal
structures, they used three probabilistic non-spinal
dependency models to prune the search space of
the spinal model. In our work, we show that a sin-
gle arc-eager model can obtain very competitive
results, even though the accuracies of our model
are lower than theirs.

In terms of parsing spinal structures, Rush et al.
(2010) introduced a dual decomposition method
that uses constituent and dependency parsing rou-
tines to parse a combined spinal structure.

In a similar style to our method Hall et al.
(2007), Hall and Nivre (2008) and Hall (2008)
introduced an approach for parsing Swedish and
German, in which MaltParser (Nivre et al., 2007)
is used to predict dependency trees, whose depen-
dency labels are enriched with constituency labels.
They used tuples that encode dependency labels,
constituent labels, head relations and the attach-
ment. The last step is to make the inverse transfor-
mation from a dependency graph to a constituent

structure.

Recently Kong et al. (2015) proposed a struc-
tured prediction model for mapping dependency
trees to constituent trees, using the CKY algo-
rithm. They assume a fixed dependency tree used
as a hard constraint. Also recently, Fernández-
González and Martins (2015) proposed an arc-
factored dependency model for constituent pars-
ing. In that work dependency labels encode the
constituent node where the dependency arises as
well as the position index of that node in the head
spine. In contrast, we use constituent triplets as
dependency labels.

Our method is based on constraining a shift-
reduce parser using the arc-eager strategy. Nivre
(2003) and Nivre (2004) establish the basis for
arc-eager algorithm and arc-standard parsing algo-
rithms, which are central to most recent transition-
based parsers (Zhang and Clark, 2011b; Zhang
and Nivre, 2011; Bohnet and Nivre, 2012). These
parsers are very fast, because the number of pars-
ing actions is linear in the length of the sentence,
and they obtain state-of-the-art-performance, as
shown in Section 4.3.

For shift-reduce constituent parsing, Sagae
and Lavie (2005; 2006) presented a shift-reduce
phrase structure parser. The main difference to
ours is that their models do not use lexical de-
pendencies. Zhang and Clark (2011a) presented
a shift-reduce parser based on CCG, and as such
is lexicalized. Both spinal and CCG represen-
tations are very expressive. One difference is
that spinal trees can be directly obtained from
constituent treebanks with head-child information,
while CCG derivations are harder to obtain.

More recently, Zhang and Clark (2009) and the
subsequent work of Zhu et al. (2013) described
a beam-search shift-reduce parsers obtaining very
high results. These models use dependency in-
formation via stacking, by running a dependency
parser as a preprocess. In the literature, stacking
is a common technique to improve accuracies by
combining dependency and constituent informa-
tion, in both ways (Wang and Zong, 2011; Farkas
and Bohnet, 2012). Our model differs from stack-
ing approaches in that it natively produces the two
structures jointly, in such a way that a rich set of
features is available.



6 Conclusions and Future Work

There are several lessons to learn from this paper.
First, we show that a simple modification to the
arc-eager strategy results in a competitive greedy
spinal parser which is capable of predicting depen-
dency and constituent structure jointly. In order
to make it work, we introduce simple constraints
to the arc-eager strategy that ensure well-formed
spinal derivations. Second, by doing this, we are
providing a good trade-off between speed and ac-
curacy, while at the same time we are providing
a dependency structure which can be really useful
for downstream applications. Even if the depen-
dency model needs to cope with a huge amount
of dependency labels (in the form of constituent
triplets), the unlabeled attachment accuracy does
not drop and the labeling accuracy (for the triplets)
is good enough for getting a good phrase-structure
parse. Overall, our work shows that greedy strate-
gies to dependency parsing can be successfuly
augmented to include constituent structure.

In the future, we plan to explore spinal deriva-
tions in new transition-based dependency parsers
(Chen and Manning, 2014; Dyer et al., 2015;
Weiss et al., 2015; Zhou et al., 2015). This would
allow to explore the spinal derivations in new ways
and to test their potentialities.
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Liang Huang and Kenji Sagae. 2010. Dynamic pro-
gramming for linear-time incremental parsing. In
Proceedings of the 48th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages
1077–1086.



Zhongqiang Huang, Mary Harper, and Slav Petrov.
2010. Self-training with products of latent vari-
able grammars. In Proceedings of the 2010 Con-
ference on Empirical Methods in Natural Language
Processing, pages 12–22. Association for Computa-
tional Linguistics.

Liang Huang. 2008. Forest reranking: Discriminative
parsing with non-local features. In ACL, pages 586–
594.

Lingpeng Kong, Alexander M. Rush, and Noah A.
Smith. 2015. Transforming dependencies into
phrase structures. In Proceedings of the 2015 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics – Human Lan-
guage Technologies. Association for Computational
Linguistics.

Terry Koo and Michael Collins. 2010. Efficient third-
order dependency parsers. In Proceedings of the
48th Annual Meeting of the Association for Compu-
tational Linguistics (ACL), pages 1–11.

Terry Koo, Xavier Carreras, and Michael Collins.
2008. Simple semi-supervised dependency parsing.
In Proceedings of the 46th Annual Meeting of the
Association for Computational Linguistics (ACL),
pages 595–603.
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