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Abstract In recent years we have seen the development of efficient provably correct
algorithms for learning Weighted Finite Automata (WFA). Most of these algorithms
avoid the known hardness results by defining parameters beyond the number of states
that can be used to quantify the complexity of learning automata under a particular
distribution. One such class of methods are the so-called spectral algorithms that
measure learning complexity in terms of the smallest singular value of some Hankel
matrix. However, despite their simplicity and wide applicability to real problems,
their impact in application domains remains marginal to this date. One of the goals
of this paper is to remedy this situation by presenting a derivation of the spectral
method for learning WFA that – without sacrificing rigor and mathematical elegance
– puts emphasis on providing intuitions on the inner workings of the method and
does not assume a strong background in formal algebraic methods. In addition, our
algorithm overcomes some of the shortcomings of previous work and is able to learn
from statistics of substrings. To illustrate the approach we present experiments on a
real application of the method to natural language parsing.

Keywords Spectral Learning ·Weighted Finite Automata · Dependency Parsing

1 Introduction

Learning finite automata is a fundamental task in Grammatical Inference. Over the
years, a multitude of variations on this problem have been studied. For example, sev-
eral learning models with different degrees of realism have been considered, ranging
from query models and the learning in the limit paradigm, to the more challenging
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PAC learning framework. The main differences between these models are the ways
in which learning algorithms can interact with the target machine. But not only the
choice of learning model makes a difference in the study of this task, but also the
particular kind of target automata that must be learned. These can range from the
classical acceptors for regular languages like Deterministic Finite Automata (DFA)
and Non-deterministic Finite Automata (NFA), to the more general Weighted Finite
Automata (WFA) and Multiplicity Automata (MA), while also considering interme-
diate case like several classes of Probabilistic Finite Automata (PFA).

Efficient algorithms for learning all these classes of machines have been pro-
posed in query models where algorithms have access to a minimal adequate teacher.
Furthermore, most of these learning problems are also known to have polynomial
information-theoretic complexity in the PAC learning model. But despite these en-
couraging results, it has been known for decades that the most basic problems re-
garding learnability of automata in the PAC model are computationally untractable
under both complexity-theoretic and cryptographic assumptions. Since these general
worst-case results preclude the existence of efficient learning algorithms for all ma-
chines under all possible probability distributions, lots of efforts have been done in
identifying problems involving special cases for which provably efficient learning
algorithms can be given. An alternative approach has been to identify additional pa-
rameters beyond the number of states that can be used to quantify the complexity of
learning a particular automaton under a particular distribution. A paradigmatic ex-
ample of this line of work are the PAC learning algorithms for PDFA given in (Ron
et al 1998; Clark and Thollard 2004; Palmer and Goldberg 2007; Castro and Gavaldà
2008; Balle et al 2013) whose running time depend on a distinguishability parameter
quantifying the minimal distance between distributions generated by different states
in the target machine.

Spectral learning methods are a family of algorithms that also fall into this partic-
ular line of work. In particular, starting with the seminal works of Hsu et al (2009) and
Bailly et al (2009), efficient provably correct algorithms for learning non-deterministic
machines that define probability distributions over sets of strings have been recently
developed. A work-around to the aforementioned hardness results is obtained in this
case by including the smallest singular value of some Hankel matrix in the bounds
on the running time of spectral algorithms. The initial enthusiasm generated by such
algorithms has been corroborated by the appearance of numerous follow-ups devoted
to extending the method to more complex probabilistic models. However, despite the
fact that these type of algorithms can be used to learn classes of machines widely
used in applications like Hidden Markov Models (HMM) and PNFA, the impact of
these methods in application domains remains marginal to this date. This remains so
even when implementing such methods involves just a few linear algebra operations
available in most general mathematical computing software packages. One of the
main purposes of this paper is to try to remedy this situation by providing practical
intuitions around the foundations of these algorithms and clear guidelines on how to
use them in practice.

In our opinion, a major cause for the gap between the theoretical and practical
development of spectral methods is the overwhelmingly theoretical nature of most
papers in this area. The state of the art seems to suggest that there is no known
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workaround to these long mathematical proofs when seeking PAC learning results.
However, it is also the case that most of the times the derivations given for these
learning algorithms provide no intuitions on why or how one should expect them to
work. Thus, obliterating the matter of PAC bounds, our first contribution is to provide
a new derivation of the spectral learning algorithm for WFA that stresses the main
intuitions behind the method. This yields an efficient algorithm for learning stochas-
tic WFA defining probability distributions over strings. Our second contribution is
showing how a simple transformation of this algorithm yields a more sample-efficient
learning method that can work with substring statistics in contrast to the usual prefix
statistics used in other methods.

Finite automata can also be used as building blocks for constructing more gen-
eral context-free grammatical formalisms. In this paper we consider the case of non-
deterministic Split Head-Automata Grammars (SHAG). These are a family of hidden-
state parsing models that have been successfully used to model the significant amount
of non-local phenoma exhibited by dependency structures in natural language. A
SHAG is composed by a collection of stochastic automata and can be used to define
a probability distribution over dependency structures for a given sentence. Each au-
tomaton in a SHAG describes the generation of particular head-modifier sequences.
Our third contribution is to apply the spectral method to the problem of learning the
constituent automata of a target SHAG. Contrary to previous works where PDFA
were used as basic constituent automata for SHAG, using the spectral method allows
us to learn SHAG built out of non-deterministic automata.

1.1 Related Work

In the last years multiple spectral learning algorithms have been proposed for a wide
range of models. Many of these models deal with data whose nature is emminently
sequential, like the work of (Bailly et al 2009) on WFA, or other works on particular
subclasses of WFA like HMM (Hsu et al 2009) and related extensions (Siddiqi et al
2010; Song et al 2010), Predictive State Representations (PSR) (Boots et al 2011),
Finite State Transducers (FST) (Balle et al 2011), and Quadratic Weighted Automata
(QWA) (Bailly 2011). Besides direct applications of the spectral algorithm to differ-
ent classes of sequential models, the method has also been combined with convex
optimization algorithms in (Balle et al 2012; Balle and Mohri 2012).

Despite this overwhelming diversity, to our knowledge the only previous work
that has considered spectral learning for the general class of probabilistic weighted
automata is due to Bailly et al (2009). In spirit, their technique for deriving the spec-
tral method is similar to ours. However, their elegant mathematical derivations are
presented assuming a target audience with a strong background on formal algebraic
methods. As such their presentation lacks the intuitions necessary to make the work
accessible to a more general audience of machine learning practitioners. In contrast
– without sacrificing rigor and mathematical elegance – our derivations put emphasis
on providing intuitions on the inner working of the spectral method.

Besides sequential models, spectral learning algorithms for tree-like structures
appearing in context-free grammatical models and probabilistic graphical models
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have also been considered (Bailly et al 2010; Parikh et al 2011; Luque et al 2012;
Cohen et al 2012; Dhillon et al 2012). In section 6.4 we give a more detailed compar-
ision between our work on SHAG and related methods that learn tree-shaped models.
The spectral method has been applied as well to other classes of probabilistic mixture
models (Anandkumar et al 2012c,a).

2 Weighted Automata and Hankel Matrices

In this section we present Weighted Finite Automata (WFA), the finite state machine
formulations that will be used throughout the paper. We begin by introducing some
notation for dealing with functions from strings to real numbers and then proceed to
define Hankel matrices. These matrices will play a very important role in the deriva-
tion of the spectral learning algorithm given in Section 4. Then we proceed to de-
scribe the algebraic formulation of WFA and its relation to Hankel matrices. Finally,
we discuss some special properties of stochastic WFA realizing probability distribu-
tions over strings. These properties will allow us to use the spectral method to learn
from substring statistics, thus yielding more sample-efficient methods than other ap-
proaches based on string or prefix statitics.

2.1 Functions on Strings and their Hankel Matrices

Let Σ be a finite alphabet. We use σ to denote an arbitrary symbol in Σ. The set of
all finite strings over Σ is denoted by Σ?, where we write λ for the empty string. We
use bold letters to represent vectors v and matrices M. We use M+ to denote the
Moore–Penrose pseudoinverse of some matrix M.

Let f : Σ? → R be a function over strings. The Hankel matrix of f is a bi-
infinite matrix Hf ∈ RΣ?×Σ? whose entries are defined as Hf (u, v) = f(uv)
for any u, v ∈ Σ?. That is, rows are indexed by prefixes and columns by suffixes.
Note that the Hankel matrix of a function f is a very redundant way to represent
f . In particular, the value f(x) appears |x| + 1 times in Hf , and we have f(x) =
Hf (x, λ) = Hf (λ, x). An obvious observation is that a matrix M ∈ RΣ?×Σ? sat-
isfying M(u1, v1) = M(u2, v2) for any u1v1 = u2v2 is the Hankel matrix of some
function f : Σ? → R.

We will be considering (finite) sub-blocks of a bi-infinite Hankel matrix Hf . An
easy way to define such sub-blocks is using a basis B = (P,S), where P ⊆ Σ? is
a set of prefixes and S ⊆ Σ? a set of suffixes. We write p = |P| and s = |S|. The
sub-block of Hf defined by B is the p × s matrix HB ∈ RP×S with HB(u, v) =
Hf (u, v) = f(uv) for any u ∈ P and v ∈ S . We may just write H if the basis B is
arbitrary or obvious from the context.

Not all bases will be equally useful for our purposes. In particular, we will be
interested in so-called closed basis. Let B = (P,S) be a basis and write Σ′ =
Σ ∪ {λ}. The prefix-closure1 of B is the basis B′ = (P ′,S), where P ′ = PΣ′.
Equivalently, a basis B = (P,S) is said to be p-closed if P = P ′Σ′ for some P ′

1 A similar notion can be defined for suffixes as well.
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called the root of P . It turns out that a Hankel matrix over a p-closed basis can be
partitioned into |Σ| + 1 blocks of the same size. This partition will be central to our
results. Let Hf be a Hankel matrix and B = (P,S) a basis. For any σ ∈ Σ′ we write
Hσ to denote the sub-block of Hf over the basis (Pσ,S). That is, the sub-block
Hσ ∈ RPσ×S of Hf is the p × s matrix defined by Hσ(u, v) = Hf (uσ, v). Thus,
if B′ is the prefix-closure of B, then for a particular ordering of the strings in P ′, we
have

H>B′ =
[

H>λ

∣∣∣ H>σ1

∣∣∣ · · · ∣∣∣ H>σ|Σ|

]
.

The rank of a function f : Σ? → R is defined as the rank of its Hankel matrix:
rank(f) = rank(Hf ). The rank of a sub-block of Hf cannot exceed rank(f), and
we will be specially interested on sub-blocks with full rank. We say that a basis B =
(P,S) is complete for f if the sub-block HB has full rank: rank(HB) = rank(Hf ).
In this case we say that HB is a complete sub-block of Hf . It turns out that the rank of
f is related to the number of states needed to compute f with a weighted automaton,
and that the prefix-closure of a complete sub-block of Hf contains enough infor-
mation to compute this automaton. These two results will provide the basis for the
learning algorithm presented in Section 4.

2.2 Weighted Finite Automata

A widely used class of functions mapping strings to real numbers is that of functions
defined by weighted finite automata (WFA) or in short weighted automata (Mohri
2009). These functions are also known as rational power series (Salomaa and Soittola
1978; Berstel and Reutenauer 1988). A WFA over Σ with n states can be defined as
a tuple A = 〈α1,α∞, {Aσ}〉, where α1,α∞ ∈ Rn are the initial and final weight
vectors, and Aσ ∈ Rn×n the transition matrix associated to each alphabet symbol
σ ∈ Σ. The function fA realized by a WFA A is defined by

fA(x) = α>1 Ax1
· · ·Axtα∞ = α>1 Axα∞ ,

for any string x = x1 · · ·xt ∈ Σ? with t = |x| and xi ∈ Σ for all 1 ≤ i ≤ t. We will
write |A| to denote the number of states of a WFA. The following characterization
of the set of functions f : Σ? → R realizable by WFA in terms of the rank of their
Hankel matrix rank(Hf ) was given in (Carlyle and Paz 1971; Fliess 1974). We also
note that the construction of an equivalent WFA with the minimal number of states
from a given WFA was first given in (Schützenberger 1961).

Theorem 1 (Carlyle and Paz (1971); Fliess (1974)) A function f : Σ? → R can be
defined by a WFA iff rank(Hf ) is finite, and in that case rank(Hf ) is the minimal
number of states of any WFA A such that f = fA.

In view of this result, we will say that A is minimal for f if fA = f and |A| =
rank(f).

Another useful fact about WFA is their invariance under change of basis. It fol-
lows from the definition of fA that if M ∈ Rn×n is an invertible matrix, then the
WFA B =

〈
M>α1,M

−1α∞, {M−1AσM}
〉

satisfies fB = fA. Sometimes B
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Fig. 1 Example of a weighted automaton over Σ = {a, b} with 2 states: (a) graph representation; (b)
algebraic representation.

will be denoted by M−1AM. This fact will prove very useful when we consider the
problem of learning a WFA realizing a certain function.

Weighted automata are related to other finite state computational models. In par-
ticular, WFA can also be defined more generally over an arbitrary semi-ring instead
of the field of real numbers, in which case there are sometimes called multiplicity au-
tomata (MA) (e.g. Beimel et al (2000)). It is well known that using weights over an
arbitrary semi-ring more computational power is obtained. However, in this paper we
will only consider WFA with real weights. It is easy to see that several other models
of automata (DFA, PDFA, PNFA) can be cast as special cases of WFA.

2.2.1 Example

Figure 1 shows an example of a weighted automaton A = 〈α1,α∞, {Aσ}〉 with two
states defined over the alphabet Σ = {a, b}, with both its algebraic representation
(Figure 1(b)) in terms of vectors and matrices and the equivalent graph representation
(Figure 1(a)) useful for a variety of WFA algorithms (Mohri 2009). Letting W =
{ε, a, b}, then B = (WΣ′,W) is a p-closed basis. The following is the Hankel matrix
of A on this basis shown with two-digit precision entries:

H>B =


ε a b aa ab ba bb

ε 0.00 0.20 0.14 0.22 0.15 0.45 0.31
a 0.20 0.22 0.45 0.19 0.29 0.45 0.85
b 0.14 0.15 0.31 0.13 0.20 0.32 0.58



3 Observables in Stochastic Weighted Automata

Previous section introduces the class of WFA in a general setting. As we will see in
next section, in order to learn an automata realizing (an approximation of) a function
f : Σ? → R using a spectral algorithm, we will need to compute (an estimate) of
a sub-block of the Hankel matrix Hf . In general such sub-blocks may be hard to
obtain. However, in the case when f computes a probability distribution over Σ? and
we have access to a sample of i.i.d. examples from this distribution, estimates of sub-
blocks of Hf can be obtained efficiently. In this section we discuss some properties
of WFA which realize probability distributions. In particular, we are interested in
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showing how different kinds of statistics that can be computed from a sample of
strings induce functions on Σ? realized by similar WFA.

We say that a WFA A is stochastic if the function f = fA is a probability dis-
tribution over Σ?. That is, if f(x) ≥ 0 for all x ∈ Σ? and

∑
x∈Σ? f(x) = 1. To

make it clear that f represents a probability distribution we may sometimes write it
as f(x) = P[x].

An interesting fact about distributions over Σ? is that given an i.i.d. sample gen-
erated from that distribution one can compute an estimation Ĥf of its Hankel matrix,
or of any finite sub-block ĤB. When the sample is large enough, these estimates will
converge to the true Hankel matrices. In particular, suppose S = (x1, . . . , xm) is a
sample containing m i.i.d. strings from some distribution P over Σ? and let us write
P̂S(x) for the empirical frequency of x in S. Then, for a fixed basis B, if we compute
the empirical Hankel matrix given by ĤB(u, v) = P̂S [uv], one can show using Mc-
Diarmid’s inequality that with high probability the following holds (Hsu et al 2009):

‖HB − ĤB‖F ≤ O
(

1√
m

)
.

This is one of the pillars on which the finite sample analysis of the spectral method
lies. We will discuss this further in Section 4.2.1.

Note that when f realizes a distribution over Σ?, one can think of comput-
ing other probabilistic quantities besides probabilities of strings P[x]. For exam-
ple, one can define the function fp that computes probabilities of prefixes; that is,
fp(x) = P[xΣ?]. Another probabilistic function that can be computed from a dis-
tribution over Σ? is the expected number of times a particular string appears as a
substring of random strings; we use fs to denote this function. More formally, given
two strings w, x ∈ Σ? let |w|x denote the number of times that x appears in w as a
substring. Then we can write fs(x) = E[|w|x], where the expectation is with respect
to w sampled from f : E[|w|x] =

∑
w∈Σ? |w|xP[w].

In general the class of stochastic WFA may include some pathological examples
with states that are not connected to any terminating state. In order to avoid such
cases we introduce the following technical condition. Given a stochastic WFA A =
〈α1,α∞, {Aσ}〉 let A =

∑
σ∈Σ Aσ . We say that A is irredundant if ‖A‖ < 1 for

some submultiplicative matrix norm ‖ · ‖. Note that a necessary condition for this
to happen is that the spectral radius of A is less than one: ρ(A) < 1. In particular,
irredundancy implies that the sum

∑
k≥0 Ak converges to (I−A)−1. An interesting

property of irredundant stochastic WFA is that both fp and fs can also be computed
by WFA as shown by the following result.

Lemma 1 Let 〈α1,α∞, {Aσ}〉 be an irredundant stochastic WFA and write: A =∑
σ∈Σ Aσ , α̃>1 = α>1 (I−A)−1, and α̃∞ = (I−A)−1α∞. Suppose f : Σ? → R

is a probability distribution such that f(x) = P[x] and define functions fp(x) =
P[xΣ?] and fs(x) = E[|w|x]. Then, the following are equivalent:

1. A = 〈α1,α∞, {Aσ}〉 realizes f ,
2. Ap = 〈α1, α̃∞, {Aσ}〉 realizes fp,
3. As = 〈α̃1, α̃∞, {Aσ}〉 realizes fs.
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Proof In the first place we note that because A is irredundant we have

α̃>1 = α>1
∑
k≥0

Ak =
∑
x∈Σ?

α>1 Ax ,

where the second equality follows from a term reordering. Similarly, we have α̃∞ =∑
x∈Σ? Axα∞. The rest of the proof follows from checking several implications.

(1⇒ 2) Using f(x) = α>1 Axα∞ and the definition of α̃∞ we have:

P[xΣ?] =
∑
y∈Σ?

P[xy] =
∑
y∈Σ?

α>1 AxAyα∞ = α>1 Axα̃∞ .

(2⇒ 1) It follows from P[xΣ+] =
∑
σ∈Σ P[xσΣ?] that

P[x] = P[xΣ?]− P[xΣ+] = α>1 Axα̃∞ −α>1 AxAα̃∞ = α>1 Ax(I−A)α̃∞ .

(1⇒ 3) Since we can write
∑
w∈Σ? P[w]|w|x = P[Σ?xΣ?], it follows that

E[|w|x] =
∑
w∈Σ?

P[w]|w|x

=
∑

u,v∈Σ?
P[uxv] =

∑
u,v∈Σ?

α>1 AuAxAvα∞ = α̃>1 Axα̃∞ .

(3⇒ 1) Using similar arguments as before we observe that

P[x] = P[Σ?xΣ?] + P[Σ+xΣ+]− P[Σ+xΣ?]− P[Σ?xΣ+]

= α̃>1 Axα̃∞ + α̃>1 AAxAα̃∞ − α̃>1 AAxα̃∞ − α̃>1 AxAα̃∞

= α̃>1 (I−A)Ax(I−A)α̃∞ .ut

A direct consequence of this constructive result is that given a WFA realizing a
probability distribution P[x] we can easily compute WFA realizing the functions fp
and fs; and the converse holds as well. Lemma 1 also implies the following result,
which characterizes the rank of fp and fs.

Corollary 1 Suppose f : Σ? → R is stochastic and admits a minimal irredundant
WFA. Then rank(f) = rank(fp) = rank(fs).

Proof Since all the constructions of Lemma 1 preserve the number of states, the result
follows from considering minimal WFA for f , fp, and fs.

From the point of view of learning, Lemma 1 provides us with tools for proving
two-sided reductions between the problems of learning f , fp, and fs. Since for all
these problems the corresponding empirical Hankel matrices can be easily computed,
this implies that for each particular task we can use the statistics which better suit its
needs. For example, if we are interested in learning a model that predicts the next
symbol in a string we might learn the function fp. On the other hand, if we want
to predict missing symbols in the middle of string we might learn the distribution f
itself. Using Lemma 1 we see that both could be learned from substring statistics.
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4 Duality, Spectral Learning, and Forward-Backward Decompositions

In this section we give a derivation of the spectral learning algorithm. Our approach
follows from a duality result between minimal WFA and factorizations of Hankel
matrices. We begin by presenting this duality result and some of its consequences.
Afterwards we proceed to describe the spectral method, which is just an efficient
implementation of the arguments used in the proof of the duality result. Finally we
give an interpretation of this method from the point of view of forward and backward
recursions in finite automata. This provides extra intuitions about the method and
stresses the role played by factorizations in its derivation.

4.1 Duality and Minimal Weighted Automata

Let f be a real function on strings and Hf its Hankel matrix. In this section we
consider factorizations of Hf and minimal WFA for f . We will show that there exists
an interesting relation between these two concepts. This relation will motivate the
algorithm presented on next section that factorizes a (sub-block of a) Hankel matrix
in order to learn a WFA for some unknown function.

Our initial observation is that a WFA A = 〈α1,α∞, {Aσ}〉 for f with n states
induces a factorization of Hf . Let P ∈ RΣ?×n be a matrix whose uth row equals
α>1 Au for any u ∈ Σ?. Furthermore, let S ∈ Rn×Σ? be a matrix whose columns are
of the form Avα∞ for all v ∈ Σ?. It is trivial to check that one has Hf = PS. The
same happens for sub-blocks: if HB is a sub-block of Hf defined over an arbitrary
basis B = (P,S), then the corresponding restrictions PB ∈ RP×n and SB ∈ Rn×S
of P and S induce the factorization HB = PBSB. Furthermore, if Hσ is a sub-block
of the matrix HB′ corresponding to the prefix-closure of HB, then we also have the
factorization Hσ = PBAσSB.

An interesting consequence of this construction is that if A is minimal for f –
i.e. n = rank(f) – then the factorization Hf = PS is in fact a rank factorization.
Since in general rank(HB) ≤ n, in this case the factorization HB = PBSB is a
rank factorization if and only if HB is a complete sub-block. Thus, we see that a
minimal WFA that realizes a function f induces a rank factorization on any complete
sub-block of Hf . The converse is even more interesting: give a rank factorization of
a complete sub-block of Hf , one can compute a minimal WFA for f .

Let H be a complete sub-block of Hf defined by the basis B = (P,S) and let Hσ

denote the sub-block of the prefix-closure of H corresponding to the basis (Pσ,S).
Let hP,λ ∈ RP denote the p-dimensional vector with coordinates hP,λ(u) = f(u),
and hλ,S ∈ RS the s-dimensional vector with coordinates hλ,S(v) = f(v). Now we
can state our result.

Lemma 2 If H = PS is a rank factorization, then the WFA A = 〈α1,α∞, {Aσ}〉
with α>1 = h>λ,SS

+, α∞ = P+hP,λ, and Aσ = P+HσS+, is minimal for f .

Proof Let A′ = 〈α′1,α′∞, {A′σ}〉 be a minimal WFA for f that induces a rank fac-
torization H = P′S′. It suffices to show that there exists an invertible M such that
M−1A′M = A. Define M = S′S+ and note that P+P′S′S+ = P+HS+ = I
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implies that M is invertible with M−1 = P+P′. Now we check that the operators
of A correspond to the operators of A′ under this change of basis. First we see that
Aσ = P+HσS+ = P+P′A′σS′S+ = M−1A′σM. Now observe that by the con-
struction of S′ and P′ we have α′1

>
S′ = hλ,S , and P′α′∞ = hP,λ. Thus, it follows

that α>1 = α′1
>

M and α∞ = M−1α′∞. ut
This result shows that there exists a duality between rank factorizations of com-

plete sub-blocks of Hf and minimal WFA for f . A consequence of this duality is
that all minimal WFA for a function f are related via some change of basis. In other
words, modulo change of basis, there exists a unique minimal WFA for any function
f of finite rank.

Corollary 2 LetA = 〈α1,α∞, {Aσ}〉 andA′ = 〈α′1,α′∞, {A′σ}〉 be minimal WFA
for some f of rank n. Then there exists an invertible matrix M ∈ Rn×n such that
A = M−1A′M.

Proof Suppose that Hf = PS = P′S′ are the rank factorizations induced by A and
A′ respectively. Then, by the same arguments used in Lemma 2, the matrix M =
S′S+ is invertible and satisfies the equation A = M−1A′M. ut

4.2 A Spectral Learning Algorithm

The spectral method is basically an efficient algorithm that implements the ideas in
the proof of Lemma 2 to find a rank factorization of a complete sub-block H of Hf

and obtain from it a minimal WFA for f . The term spectral comes from the fact that
it uses SVD, a type of spectral decomposition. We describe the algorithm in detail
in this section and give a complete set of experiments that explores the practical
behavior of this method in Section 5.

Suppose f : Σ? → R is an unknown function of finite rank n and we want to
compute a minimal WFA for it. Let us assume that we know that B = (P,S) is a
complete basis for f . Our algorithm receives as input: the basis B and the values of f
on a set of stringsW . In particular, we assume that PΣ′S ∪ P ∪ S ⊆ W . It is clear
that using these values of f the algorithm can compute sub-blocks Hσ for σ ∈ Σ′ of
Hf . Furthermore, it can compute the vectors hλ,S and hP,λ. Thus, the algorithm only
needs a rank factorization of Hλ to be able to apply the formulas given in Lemma 2.

Recall that the compact SVD of a p × s matrix Hλ of rank n is given by the ex-
pression Hλ = UΛV>, where U ∈ Rp×n and V ∈ Rs×n are orthogonal matrices,
and Λ ∈ Rn×n is a diagonal matrix containing the singular values of Hλ. The most
interesting property of compact SVD for our purposes is that Hλ = (UΛ)V> is a
rank factorization. We will use this factorization in the algorithm, but write it in a
different way. Note that since V is orthogonal we have V>V = I, and in particular
V+ = V>. Thus, the factorization above is equivalent to Hλ = (HλV)V>.

With this factorization, equations from Lemma 2 are written as follows:

α>1 = h>λ,SV ,

α∞ = (HλV)+hP,λ ,

Aσ = (HλV)+HσV .
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These equations define what we call from now on the spectral learning algorithm.
The running time of the algorithm can be bound as follows. Note that the cost of
computing a compact SVD and the pseudo-inverse is O(|P||S|n), and the cost of
computing the operators is O(|Σ||P|n2). To this we need to add the time required
in order to compute the Hankel matrices given to the algorithm. In the particular
case of stochastic WFA described in Section 3, approximate Hankel matrices can be
computed from a sample S containing m examples in time O(m) – note that the
running time of all linear algebra operations is independent of the sample size. Thus,
we get a total running time of O(m+n|P||S|+n2|P||Σ|) for the spectral algorithm
applied to learn any stochastic function of the type described in Section 3.

4.2.1 Sample Complexity of Spectral Learning

The spectral algorithm we just described can be used even when H and Hσ are not
known exactly, but approximations Ĥ and Ĥσ are available. In this context, an ap-
proximation means that we have an estimate for each entry in these matrices; that is,
we know an estimate of f for every string inW . A different concept of approximation
could be that one knows f exactly in some, but not all strings inW . In this context,
one can still apply the spectral method after a preliminary matrix completion step;
see (Balle and Mohri 2012) for details. When the goal is to learn a probability distri-
bution over strings – or prefixes, or substrings – we are always in the first of these two
settings. In these cases we can apply the spectral algorithm directly using empirical
estimations Ĥ and Ĥσ . A natural question is then how close to f is the approximate
function f̂ computed by the learned automaton Â. Experiments described in the fol-
lowing sections explore this question from an empirical perspective and compare the
performance of spectral learning with other approaches. Here we give a very brief
outline of what is known about the sample complexity of spectral learning. Since an
in-depth discussion of these results and the techniques used in their proofs is outside
the scope of this paper, for further details we refer the reader to papers where these
bounds were originally presented (Hsu et al 2009; Bailly et al 2009; Siddiqi et al
2010; Bailly 2011; Balle 2013).

All known results about learning stochastic WFA with spectral methods fall into
the well-known PAC-learning framework (Valiant 1984; Kearns et al 1994). In par-
ticular, assuming that a large enough sample of i.i.d. strings drawn from some dis-
tribution f over Σ? realized by a WFA is given to the spectral learning algorithm,
we know that with high probability the output WFA computes a function f̂ that is
close to f . Sample bounds in this type of results usually depend polynomially on the
usual PAC parameters – accuracy ε and confidence δ – as well as other parameters
depending on the target f : the size of the alphabet Σ, the number of states n of a
minimal WFA realizing f , the size of the basis B, and the smallest singular values of
H and other related matrices.

These results come in different flavors, depending on what assumptions are made
on the automaton computing f and what criteria is used to measure how close f̂ is
to f . When f can be realized by a Hidden Markov Model (HMM), Hsu et al (2009)
proved a PAC-learning result under the L1 distance restricted to strings in Σt for
some t ≥ 0 – their bound depends polynomially in t. A similar result was obtained
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in (Siddiqi et al 2010) for Reduced Rank HMM. For targets f computed by a general
stochastic WFA, Bailly et al (2009) gave a similar results under the milder L∞ dis-
tance. When f can be computed by a Quadratic WFA one can obtain L1 bounds over
all Σ?; see (Bailly 2011). The case where the function can be computed by a Proba-
bilistic WFA was analyzed in (Balle 2013), where L1 bounds over strings in Σ≤t are
given. It is important to note that, with the exception of (Bailly 2011), none of these
methods is guaranteed to return a stochastic WFA. That is, though the hypothesis f̂
is close to a probability distribution in L1 distance, it does not necessarily assign a
non-negative number to each strings, much less adds up to one when summed over
all strings – though both properties are satisfied in the limit. In practice this is a prob-
lem when trying to evaluate these methods using perplexity-like accuracy measures.
We do not face this difficulty in our experiments because we use WER-like accuracy
measures. See the discussion in Section 8 for pointers to some attempts to solve this
problem.

Despite their formal differences, all these PAC-learning results rely on similar
proof techniques. Roughly speaking, the following three principles lay at the bottom
of these results:

1. Convergence of empirical estimates Ĥ and Ĥσ to their true values at a rate of
O(m−1/2) in terms of Frobenius norms; here m is the sample size.

2. Stability of linear algebra operations – SVD, pseudoinverse and matrix multipli-
cation – under small perturbations. This implies that when the errors in empirical
Hankel matrices are small, we get operators α̂1, α̂∞, and Âσ which are close to
their true values, modulo a change of basis.

3. Mild aggregation of errors when computing
∑
|f(x) − f̂(x)| over large sets of

strings.

We note here that the first of these points, which we already mentioned in Section 3,
is enough to show the statistical consistency of spectral learning. The other two points
are rather technical and lie at the core of finite-sample analyses of spectral learning
of stochastic WFA.

4.2.2 Choosing the parameters

When run with approximate data Ĥλ, Ĥσ for σ ∈ Σ, ĥλ,S , and ĥP,λ, the algorithm
also receives as input the number of states n of the target WFA. That is because the
rank of Ĥλ may be different from the rank of Hλ due to the noise, and in this case
the algorithm may need to ignore some of the smallest singular values of Ĥλ, which
just correspond to zeros in the original matrix that have been corrupted by noise. This
is done by just computing a truncated SVD of Ĥλ up to dimension n – we note that
the cost of this computation is the same as the computation of a compact SVD on a
matrix of rank n. It was shown in (Bailly 2011) that when empirical Hankel matrices
are sufficiently accurate, inspection of the singular values of Ĥ can yield accurate
estimates of the number of states n in the target. In practice one usually chooses the
number of states via some sort of cross-validation procedure. We will get back to this
issue in Section 5.
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The other important parameter to choose when using the spectral algorithm is the
basis. It is easy to show that for functions of rank n there always exist complete basis
with |P| = |S| = n. In general there exist infinitely many complete basis and it is safe
to assume in theoretical results that at least one is given to the algorithm. However,
choosing a basis in practice turns out to be a complex task. A common choice are
basis of the form P = S = Σ≤k for some k > 0 (Hsu et al 2009; Siddiqi et al 2010).
Another approach, is to choose a basis that contains the most frequent elements ob-
served in the sample, which depending on the particular target model can be either
strings, prefixes, suffixes, or substrings. This approach is motivated by the theoreti-
cal results from (Balle et al 2012). It is shown there that a random sampling strategy
will succeed with high probability in finding a complete basis when given a large
enough sample. This suggests that including frequent prefixes and suffixes might be
a good heuristic. This approach is much faster than the greedy heuristic presented
in (Wiewiora 2005), which for each prefix added to the basis makes a computation
taking exponential time in the number of states n. Other authors suggest using the
largest Hankel matrix that can be estimated using the given sample; that is, build
a basis that includes every prefix and suffix seen in the sample (Bailly et al 2009).
While the statistical properties of such estimation remain unclear, this approach be-
comes computationally unfeasible for large samples because in this case the size of
the basis does grow with the number of examples m. All in all, designing an efficient
algorithm for obtaining an optimal sample-dependent basis is an open problem. In
our experiments we decided to adopt the simplest sample-dependent strategy: choos-
ing the most frequent prefixes and suffixes in the sample. See Sections 5 and 7 for
details.

4.3 The Forward-Backward Interpretation

We say that a WFA A = 〈α1,α∞, {Aσ}〉 with n states is probabilistic if the follow-
ing are satisfied:

1. All parameters are non-negative. That is, for all σ ∈ Σ and all i, j ∈ [n]:
Aσ(i, j) ≥ 0, α1(i) ≥ 0, and α∞(i) ≥ 0.

2. Initial weights add up to one:
∑
i∈[n] α1(i) = 1.

3. Transition and final weights from each state add up to one. That is, for all i ∈ [n]:
α∞(i) +

∑
σ∈Σ

∑
j∈[n] Aσ(i, j) = 1.

This model is also called in the literature probabilistic finite automata (PFA) or prob-
abilistic non-deterministic finite automata (PNFA). It is obvious that probabilistic
WFA are also stochastic, since fA(x) is the probability of generating x using the
given automaton.

It turns out that when a probabilistic WFA A = 〈α1,α∞, {Aσ}〉 is considered,
the factorization induced on H has a nice probabilistic interpretation. Analyzing the
spectral algorithm from this perspective yields additional insights which are useful to
keep in mind.

Let Hf = PS be the factorization induced by a probabilistic WFA with n states
on the Hankel matrix of fA(x) = f(x) = P[x]. Then, for any prefix u ∈ Σ?, the uth
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NNP , VBN IN NNP NNP , VBZ CC VBZ JJ , NN CC NN NNS .
Noun . Verb Adp Noun Noun . Verb Conj Verb Adj . Noun Conj Noun Noun .
Bell , based in Los Angeles , makes and distributes electronic , computer and building products .

Fig. 2 An example sentence from the training set. The bottom row is are the words, which we do not
model. The top row are the part-of-speech tags using the original tagset of 45 tags. The middle row are the
simplified part-of-speech tags, using a tagset of 12 symbols.

row of P is given by the following n-dimensional vector:

Pu(i) = P[u , s|u|+1 = i] i ∈ [n] .

That is, the probability that the probabilistic transition system given by A generates
the prefix u and ends up in state i. The coordinates of these vectors are usually called
forward probabilities. Similarly, the column of S given by suffix v ∈ Σ? is the n-
dimensional vector given by:

Sv(i) = P[v | s = i] i ∈ [n] .

This is the probability of generating a suffix s when A is started from state i. These
are usually called backward probabilities.

The same interpretation applies to the factorization induced on a sub-block HB =
PBSB. Therefore, assuming there exists a minimal WFA for f(x) = P[x] which is
probabilistic2, Lemma 2 says that a WFA for f can be learned from information
about the forward and backward probabilities over a small set of prefixes and suf-
fixes. Teaming this basic observation with the spectral method and invariance under
change of basis one can show an interesting fact: forward and backward (empirical)
probabilities for a probabilistic WFA can be recovered (modulo a change of basis) by
computing an SVD on (empirical) string probabilities. In other words, though state
probabilities are non-observable, they can be recovered (modulo a linear transforma-
tion) from observable quantities.

5 Experiments on Learning PNFA

In this section we present some experiments that illustrate the behavior of the spectral
learning algorithm at learning weighted automata under different configurations. We
also present a comparison to alternative methods for learning WFA, namely to base-
line unigram and bigram methods, and to an Expectation Maximization algorithm for
learning PNFA (Dempster et al 1977).

The data we use are sequences of part-of-speech tags of English sentences, hence
the weighted automata we learn will model this type of sequential data. In Natural
Language Processing, such sequential models are a central building block in methods
for part-of-speech tagging. The data we used is from the Penn Treebank (Marcus et al
1993), where the part-of-speech tagset consists of 45 symbols. To test the learning al-
gorithms under different conditions, we also did experiments with a simplified tagset

2 This is not always the case, see (Denis and Esposito 2008) for details.
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of 12 tags, using the mapping by Petrov et al (2012). We used the standard partitions
for training (sections 2 to 21, with 39,832 sequences with an average length of 23.9)
and validation (section 24, with 1,700 sequences with an average length of 23.6);
we did not use the standard test set. Figure 2 shows an example sequence from the
training set.

As a measure of error, we compute the word error rate (WER) on the validation
set. WER computes the error at predicting the symbol that most likely follows a given
prefix sequence, or predicting a special STOP symbol if the given prefix is most likely
to be a complete sequence. If w is a validation sequence of length t, we evaluate t+1
events, one per each symbolwi given the prefixw1:i−1 and one for the stopping event;
note that each event is independent of the others, and that we always use the correct
prefix to condition on. WER is the percentage of errors averaged over all events in
the validation set.

We would like to remind the reader that a WFA learned by the spectral method
is only guaranteed to realize a probabilistic distribution on Σ∗ when we use an exact
complete sub-block of the Hankel of a stochastic function. In experiments, we only
have access to a finite sample, and even though the SVD is robust to noise, we in
fact observe that the WFA we obtain do not define distributions. Hence, standard
evaluation metrics for probabilistic language models such as perplexity are not well
defined here, and we prefer to use an error metric such as WER that does not require
normalized predictions. We also avoid saying that these WFA compute probabilities
over strings, and we will just say they compute scores.

5.1 Methods Compared

We now describe the weighted automata we compare, and give some details about
how they were estimated and used to make predictions.

Unigram Model A WFA with a single state, that emits symbols according to their
frequency in training data. When evaluating WER, this method will always predict
the most likely symbol (in our data NN, which stands for singular noun).

Bigram Model A deterministic WFA with |Σ| + 1 states, namely one special start
state λ and one state per symbol σ, and the following operators:

– α1(λ) = 1 and α1(σ) = 0 for σ ∈ Σ
– Aσ(i, j) = 0 if σ 6= j
– For each state i, Aσ(i, σ) for all σ and α∞(i) is a distribution estimated from

training counts, without smoothing.

EM Model A non-deterministic WFA with n states trained with Expectation Max-
imization (EM), where n is a parameter of the method. The learning algorithm ini-
tializes the WFA randomly, and then it proceeds iteratively by computing expected
counts of state transitions on training sequences, and re-setting the parameters of the
WFA by maximum likelihood given the expected counts. On validation data, we use
a special operator α̃∞ = 1 to compute prefix probabilities, and we use the α∞
resulting from EM to compute probabilities of complete sequences.
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Spectral Model A non-deterministic WFA with n states trained with the spectral
method, where the parameters of the method are a basis (P,S) of prefixes and suf-
fixes, and the number of states n. We experiment with two ways of setting the basis:

Σ Basis: We consider one prefix/suffix for each symbol in the alphabet, that is P =
S = Σ. This is the setting analyzed by Hsu et al (2009) in their theoretical
work. In this case, the statistics gathered at training to estimate the automaton
will correspond to unigram, bigram and trigram statistics.

Top-k Basis: In this setting we set the prefixes and suffixes to be frequent subse-
quences of the training set. In particular, we consider all subsequences of symbols
up to length 4, and sort them by frequency in the training set. We then set P and
S to be the most frequent k subsequences, where k is a parameter of the model.

Since the training sequences are quite long, relative to the size of the sequences
in the basis, we choose to estimate from the training sample a Hankel sub-block
for the function fs(x) = E[|w|x]. Hence, the spectral method will return As =
〈α̃1, α̃∞, {Aσ}〉 as defined in Lemma 1. We use Lemma 1 to transform As into
A and then into As. To calcule WER on validation data, we use As to compute scores
of prefix sequences, and A to compute scores of complete sequences.

As a final detail, when computing next-symbol predictions with WFA we kept
normalizing the state vector. That is, if we are given a prefix sequence w1,i we com-
pute αi >Aσα̃∞ as the score for symbol σ and αi >α∞ as the score for stopping,
where αi is a normalized state vector at position i. It is recursively computed as

α1 = α1 and αi+1 =
αi >Awi

αi >Awi α̃∞
. This normalization should not change the predic-

tions, but it helps avoiding numerical precision problems when validation sequences
are relatively long.

5.2 Results

We trained all types of models for the two sets of tags, namely the simplified set of
12 tags and the original tagset of 45 tags. For the simplified set, the unigram model
obtained a WER of 69.4% on validation data and the bigram improved to 66.6%. For
the original tagset, the unigram and bigram WER were of 87.2% and 69.4%.

We then evaluated spectral models trained with the Σ basis. Figure 3 plots the
WER of this method as a function of the number of states, for the simplified tagset
(left) and the original one (right). We can see that the spectral method improves the
bigram baseline when the number of states is 6–8 for the simplified tagset and 8–11
for the original tagset. While the improvements are not huge, one interpretation of this
result is that the spectral method is able compress a bigram-based deterministic WFA
with |Σ|+ 1 states into a non-deterministic WFA with less states. The same plot also
shows curves of performance for the spectral method, where the basis corresponds to
the most frequent k subsequences in training, for several k. We clearly can see that
as k grows the performance improves significantly. We also can see that the choice
of the number of states is less critical than with the Σ basis.
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Fig. 3 Performance of the spectral method in terms of WER relative to the number of states, compared to
the baseline performance of an unigram and a bigram model. The left plot corresponds to the simplified
tagset of 12 symbols, while the right plot corresponds to the tagset of 45 symbols. For the spectral method,
we show a curve corresponding to the Σ basis, and curves for the extended that use the k most frequent
training subsequences.
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Fig. 4 Top plots: performance of EM with respect to the number of states, where each model was run for
100 iterations. Bottom: convergence of EM in terms of WER at validation. Left plots correspond to the
simplified tagset of 12 tags, while right plots correspond to the original tagset of 45 symbols.
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Fig. 5 Comparison of different methods in terms of WER on validation data with respect to number of
states. The left plot corresponds to the simplified tagset of 12 symbols, while the right plot corresponds to
the tagset of 45 symbols.

We now comment on the performance of EM, which is presented in Figure 4.
The top plots present the WER as a function of the number of states, for both tagsets.
Clearly, the performance significantly improves with the number of states, even for
large number of states up to 150. The bottom plots show convergence curves of WER
in terms of the number of EM iterations, for some selected number of states. The per-
formance of EM improves the bigram baseline after 20 iterations, and gets somewhat
stable (in terms of WER) at about 60 iterations. Note that the cost of one EM iteration
requires to compute expectations on all training sequences, a computation that takes
quadratic time with the number of states.

Figure 5 summarizes the best curves of all methods, for the two tagsets. For ma-
chines up to 20 states in the simplified tagset, and 10 states in the original tagset, the
performance of the spectral method with extended basis is comparable of that of EM.
Yet, the EM algorithm is able to improve the results when increasing the number of
states. We should note that in our implementation, the runtime of a single EM itera-
tion is at least twice of the total runtime of learning a model with spectral method.

6 Non-Deterministic Split Head-Automata Grammars

In this section we develop an application of the spectral method for WFA to the prob-
lem of learning split head-automata grammars (SHAG) (Eisner and Satta 1999; Eis-
ner 2000), a context-free grammatical formalism whose derivations are dependency
trees. A dependency tree is a type of syntactic structure where the basic element is
a dependency, a syntactic relation between two words of a sentence represented as a
directed arc in the tree. Figure 6 shows a dependency tree for an English sentence. In
our application, we will assume that the training set will be in the form of sentences
(i.e. input sequences) paired with their dependency tree. From this type of data, we
will learn probabilistic SHAG models using the spectral method that will be then
used to predict the most likely dependency tree for test sentences. In the rest of this
section we first define SHAG formally. We then describe how the spectral method
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NNP , VBN IN NNP NNP , VBZ CC VBZ JJ , NN CC NN NNS .
Bell , based in Los Angeles , makes and distributes electronic , computer and building products .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

?

head dir. modifiers head dir. modifiers
? LEFT λ CC9 LEFT λ
? RIGHT VBZ8 CC9 RIGHT λ
NNP1 LEFT λ VBZ10 LEFT λ
NNP1 RIGHT ,2 VBN3 ,7 VBZ10 RIGHT λ
,2 LEFT λ JJ11 LEFT λ
,2 RIGHT λ JJ11 RIGHT ,12 NN13 CC14 NN15

VBN3 LEFT λ ,12 LEFT λ
VBN3 RIGHT IN4 ,12 RIGHT λ
IN4 LEFT λ NN13 LEFT λ
IN4 RIGHT NNP6 NN13 RIGHT λ
NNP5 LEFT λ CC14 LEFT λ
NNP5 RIGHT λ CC14 RIGHT λ
NNP6 LEFT NNP5 NN15 LEFT λ
NNP6 RIGHT λ NN15 RIGHT λ
,7 LEFT λ NNS16 LEFT JJ11
,7 RIGHT λ NNS16 RIGHT λ
VBZ8 LEFT NNP1 .17 LEFT λ
VBZ8 RIGHT CC9 VBZ10 NNS16 .17 .17 RIGHT λ

Fig. 6 An example of a dependency tree. Each arc in the dependency tree represents a syntactic relation
between a head token (the origin of each arc) and one of its modifier tokens (the arc destination). The
special root token is represented by ?. For each token, we print the part-of-speech, the word itself and
its position, though our head-automata grammars only model sequences of part of speech tags. The table
below the tree prints all head-modifier sequences of the tree. The subscript number next to each tag is
the position of the corresponding token. Note that for a sentence of n tokens there are always 2(n + 1)
sequences, even though most of them are empty.

can be used to learn a SHAG, and finally we describe how we parse sentences with
our SHAG models. Then, in section 7 of this article we present experiments.

6.1 SHAG

We will use xi:j = xixi+1 · · ·xj to denote a sequence of symbols xt with i ≤ t ≤
j. A SHAG generates sentences s0:N , where symbols st ∈ Σ with 1 ≤ t ≤ N
are regular words and s0 = ? 6∈ Σ is a special root symbol. Let Σ̄ = Σ ∪ {?}.
A derivation y, i.e. a dependency tree, is a collection of head-modifier sequences
〈h, d, x1:T 〉, where h ∈ Σ̄ is a word, d ∈ {LEFT, RIGHT} is a direction, and x1:T
is a sequence of T words, where each xt ∈ Σ is a modifier of h in direction d.
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We say that h is the head of each xt. Modifier sequences x1:T are ordered head-
outwards, i.e. among x1:T , x1 is the word closest to h in the derived sentence, and
xT is the furthest. A derivation y of a sentence s0:N consists of a LEFT and a RIGHT
head-modifier sequence for each st, i.e. there are always two sequences per symbol
in the sentence. As special cases, the LEFT sequence of the root symbol is always
empty, while the RIGHT one consists of a single word corresponding to the head of
the sentence. We denote by Y the set of all valid derivations. See Figure 6 to see the
head-modifier sequences associated with an example dependency tree.

Assume a derivation y contains 〈h, LEFT, x1:T 〉 and 〈h, RIGHT, x′1:T ′〉. LetL(y, h)
be the derived sentence headed by h, which can be expressed as

L(y, xT ) · · · L(y, x1) h L(y, x′1) · · · L(y, x′T ′).

The language generated by a SHAG are the strings L(y, ?) for any y ∈ Y . 3

6.1.1 Probabilistic SHAG

In this article we use probabilistic versions of SHAG where probabilities of head-
modifier sequences in a derivation are independent of each other:

P(y) =
∏

〈h,d,x1:T 〉∈y

P(x1:T |h, d) . (1)

In the literature, standard arc-factored models further assume that

P(x1:T |h, d) =

T+1∏
t=1

P(xt|h, d, σt) ,

where xT+1 is always a special STOP word, and σt is the state of a deterministic
automaton generating x1:T+1. For example, setting σ1 = FIRST and σt>1 = REST
corresponds to first-order models, while setting σ1 = NULL and σt>1 = xt−1 corre-
sponds to sibling models (Eisner 2000; McDonald et al 2005; McDonald and Pereira
2006).

We will define a SHAG using a collection of weighted automata to compute prob-
abilities. Assume that for each possible head h in the vocabulary Σ̄ and each direc-
tion d ∈ {LEFT, RIGHT} we have a weighted automaton that computes probabilities
of modifier sequences as follows:

P(x1:T |h, d) = (αh,d1 )>Ah,d
x1
· · ·Ah,d

xt α
h,d
∞ .

Then, this collection of weighted automata defines an non-deterministic SHAG that
assigns a probability to each y ∈ Y according to (1).

3 Throughout the paper we assume we can distinguish the words in a derivation, irrespective of whether
two words at different positions correspond to the same symbol.
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6.2 Learning SHAG

A property of our non-deterministic SHAG models is that the probability of a deriva-
tion factors into the probability of each head-modifier sequence. In other words, the
state processes only model horizontal structure of the tree, and different WFA do
not interact in a derivation. In addition, in this article we make the assumption that
training sequences come paired with dependency trees, i.e. we assume a supervised
setting. Hence, we do not deal with the hard problem of inducing grammars from
sequences.

These two facts make the application of the spectral method for WFA almost triv-
ial. From the training set, we can decompose each dependency tree into sequences
of modifiers, and create a training set for each head of direction containing the cor-
responding sequences of modifiers. Then, for each head and direction, we can learn
WFA by direct application of the spectral method.

6.3 Parsing with Non-Deterministic SHAG

Given a sentence s0:N we would like to find its most likely derivation,

ŷ = argmax
y∈Y(s0:N )

P(y).

This problem, known as MAP inference, is known to be intractable for hidden-state
structure prediction models, as it involves finding the most likely tree structure while
summing out over hidden states. We use a common approximation to MAP based
on first computing posterior marginals of tree edges (i.e. dependencies) and then
maximizing over the tree structure (see Park and Darwiche (2004) for complexity
of general MAP inference and approximations). For parsing, this strategy is some-
times known as MBR decoding; previous work has shown that empirically it gives
good performance (Goodman 1996; Clark and Curran 2004; Titov and Henderson
2006; Petrov and Klein 2007). In our case, we use the non-deterministic SHAG to
compute posterior marginals of dependencies. We first explain the general strategy of
MBR decoding, and then present an algorithm to compute marginals.

Let (si, sj) denote a dependency between head word i and modifier word j. The
posterior or marginal probability of a dependency (si, sj) given a sentence s0:N is
defined as

µi,j = P((si, sj) | s0:N ) =
∑

y∈Y(s0:N ) : (si,sj)∈y

P(y) .

To compute marginals, the sum over derivations can be decomposed into a product
of inside and outside quantities (Baker 1979). In Appendix A we describe an inside-
outside algorithm for non-deterministic SHAG. Given a sentence s0:N and marginal
scores µi,j , we compute the parse tree for s0:N as

ŷ = argmax
y∈Y(s0:N )

∑
(si,sj)∈y

logµi,j (2)
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using the standard projective parsing algorithm for arc-factored models (Eisner 2000).
Overall we use a two-pass parsing process, first to compute marginals and then to
compute the best tree.

6.4 Related Work

There have been a number of works that apply spectral learning methods to tree struc-
tures. Dhillon et al (2012) present a latent-variable model for dependency parsing,
where the state process models vertical interactions between heads and modifiers,
such that hidden states pass information from the root of the tree to each leaf. In
their model, given the state of a head, the modifiers are independent of each other. In
contrast, in our case the hidden states model interactions between the children of a
head, but hidden states do not pass information vertically. In our case the application
of the spectral method is straightforward, while the vertical case requires taking into
account that at each node the sequence from the root to the node branches out into
multiple children.

There have been extensions by Bailly et al (2010) and Cohen et al (2012) of
the spectral method for probabilistic context-free grammars (PCFG), a formalism
that includes SHAG. In this case the state process can model horizontal and vertical
interactions simultaneously, by making use of tensor operators associated to the rules
of the grammar. Recently, Cohen et al (2013) have presented experiments to learn
phrase-structure models using the a spectral method.

The works mentioned so far model a joint distribution over trees of different sizes,
which is the suitable setting for models like natural language parsing. In contrast,
Parikh et al (2011) presented a spectral method to learn distributions over labelings
of a fixed (though arbitrary) tree topology.

In all these cases, the learning setting is supervised, in the sense that training
sequences are paired with their tree structure, and the spectral algorithm is used to
induce the hidden state process. A more ambitious problem is that of grammatical
inference, where the goal is to induce the model only from sequences. Regarding
spectral methods, Mossel and Roch (2005) study the induction of the topology of a
phylogenetic tree-shaped model, and Hsu et al (2012) discuss spectral techniques to
induce PCFG, with dependency grammars as a special case.

7 Experiments on Learning SHAG

In this section we present experiments with SHAG. We learn non-deterministic SHAG
using different versions of the spectral algorithm, and compare them to non-deterministic
SHAG learned with EM and to some baseline deterministic SHAG.

Our experiments involve fully unlexicalized models, i.e. parsing part-of-speech
tag sequences. While this setting falls behind the state-of-the-art, it is nonetheless
valid to analyze empirically the effect of incorporating hidden states via weighted
automata, which results in large improvements. At the end, we present some analysis
of the automaton learned by the spectral algorithm to see the information that is
captured in the hidden state space.
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q0 q1

DT, JJ, . . .

STOP q0

q2

q1

DT, JJ, . . .

STOP

DT, JJ, . . .

STOP

(a) (b)

Fig. 7 Unlexicalized DFAs illustrating the features encoded in the deterministic baselines. For clarity, on
each automata we added a separate final state, and a special ending symbol STOP. (a) DET. (b) DET+F.

All the experiments were done with the dependency version of the English WSJ
Penn Treebank, using the standard partitions for training and validation (see sec-
tion 5). The models were trained using the modifier sequences extracted from the
training dependency trees, and they were evaluated parsing the validation set and
computing the Unlabeled Attachment Score (UAS). UAS is an accuracy measure that
accounts for the percentage of tokens that were assigned the correct head word (note
that in a dependency tree, each word modifies exactly one head).

7.1 Methods Compared

As a SHAG is a collection of automata, each one has its own alphabet Σh,d, defined
as the set of symbols ocurring in the training modifier sequences for that head h and
direction d. We compare the following models:

Baseline Models Deterministic SHAG with a fixed global DFA structure. The PDFA
transition probabilities for each head and direction are estimated using the training
modifier sequences. We define two concrete baselines depending on the DFA struc-
ture:

DET: A single state DFA as in Figure 7(a).
DET+F: Two states, one emitting the first modifier of a sequence, and another emit-

ting the rest, as shown in Figure 7(b) (see Eisner and Smith (2010) for a similar
deterministic baseline).

EM Model A non-deterministic SHAG with n states trained with Expectation Maxi-
mization (EM) as in section 5.

Spectral Models Non-deterministic SHAG where the WFA are trained with the spec-
tral algorithm. As in section 5, we use substring expectation estimations and then we
use Lemma 1 to obtain WFA that approximate full sequence distributions. The num-
ber of states for each WFA is min(|Σh,d|, n), where n is a parameter of the model.
We do experiments with two variants of the spectral method:
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Σ′ Basis: The basis for each WFA is Ph,d = Sh,d = (Σh,d)′ = Σh,d ∪ {λ}. For
this model, we use an additional parameter m, a minimal mass used to discard
states. In each WFA, we discard the states with proportional singular value < m.

Extended Basis: f is a parameter of the model, namely a cut factor that defines the
size of the basis as follows. For each WFA, we use as basis Ph,d and Sh,d the
set of |Σh,d|f most frequent training subsequences of symbols (up to length 4).
Hence, f is a relative size of the basis for a WFA, proportional to the size of its
alphabet. We always include the empty sequence λ in the basis.

7.2 Results

The results for the deterministic baselines were a UAS of 68.52% for DET and a UAS
of 74.80% for DET+F.

In the first set of experiments with the spectral method, we evaluated the models
trained with the Σ′ basis. Figure 8(a) shows the resulting UAS scores in terms of
the parameter n (the number of states). We plot curves for the basic spectral model
with no state discarding (m = 0) and with state discarding for different values of
minimal mass (m > 0). The basic model improves over the baselines, reaching a peak
UAS of 79.75% with 9 states, but then the accuracy starts to drop and with 20 states
it performs worse than DET+F. The curves for the models with the singular-value
based state discarding strategy also have a peak at 9 states, but then they converge to
a stable performance, always above the baselines. The best result is a UAS of 79.81%
for m = 0.0001, but the best overall curve is for m = 0.0005, with a peak of 79.79%
and converging then to 79.64%. Although very simple, our state discarding strategy
seems to be effective to obtain models with stable performance.

In the second set of experiments with the spectral method, we evaluated models
estimated with extended basis. Figure 8(b) shows curves for different cut factors f ,
plotting UAS scores in terms of the number of states.4 Here, we clearly see that
the performance largely improves and is more stable with bigger values for f .5 The
best results are clearly better than the ones of the basic model (UAS 80.90% vs.
79.81%) and, more interestingly, the curves reach stability without the need of a state
discarding strategy.

The results for the experiments with EM are shown in Figure 9. The left figure
plots accuracy with respect to the number of states, where we see that EM obtains
improvements as the number of states increases (though for n > 100 the improve-
ments are small). The right plot shows the convergence of EM in terms of accuracy
relative to the number of iterations. As in the experiments with WA, EM needs about
50 iterations to obtain a stable performance.

To summarize, in Figure 10(a) we compare the best runs of each method. In terms
of accuracy, the spectral method with extended basis obtains accuracies comparable
to EM. We would like to note that, as in the experiments with WFA, in terms of

4 It must be clear that f = 1 is not equivalent to a Σ′ basis. While both have the same basis size, the
Σ′ basis only has sequences of length ≤ 1, while the extended model may include longer sequences and
discard unfrequent symbols.

5 For f > 10 we did not see significant improvements in the performance.
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Fig. 8 Accuracy of the different spectral methods (UAS in function of the number of states). (a) Curves
for the Σ′ basis: basic spectral method (m = 0) and state discarding with minimum mass m > 0. (b)
Curves for the extended basis with different cut factors f .
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Fig. 9 Accuracy for EM. (a) UAS with respect to number of states. (b) UAS with respect to number of
training iterations. Curves for different numbers of states n.

training time the spectral algorithm is much faster than EM (each EM iteration takes
at least twice the time of running the spectral method).

7.3 Result Analysis

Our purpose in this section is to see what information is encoded in the models
learned by the spectral algorithm. However, hidden state spaces are hard to interpret,
and this is even harder if they are projected into a non-probabilistic space through
a basis change, as in our case. To do the analysis, we build DFA that approximate
the behaviour of the non-deterministic models when they generate highly probable
sequences. The DFA approximations allows us to observe in a simple way some lin-
guistically relevant phenomena encoded in the states, and to compare them with man-
ually encoded features of well-known models. In this section we describe the DFA
approximation construction method, and then we use it to analyze the most relevant
unlexicalized automaton in terms of number of dependencies, namely, the automaton
for h =NN and d = LEFT.
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Fig. 10 Comparison of different methods in terms of UAS with respect to the number of states.

7.3.1 DFA Approximation for Stochastic WFA

When generating a sequence, a DFA is in a single state at each step of the generation.
However, in a PNFA, what we have at each step is a vector with the probabilities of
being at each state. More generally, in a WFA, at each step we have an arbitrary vector
in Rn, called the forward-state vector. For a WFA and a given sequence x = x1 . . . xt,
the forward-state vector after generating x is defined as

α(x) =
(
α>1 Ax1

· · ·Axt

)>
.

While generating a sequence x, a WFA traverses the Rn space with a path α(x1),
α(x1x2), . . ., α(x1 . . . xt), resembling a deterministic process in an infinite-state
space.

To build a DFA approximation, we first compute a set of forward vectors corre-
sponding to the most frequent prefixes of training sequences. Then, we cluster these
vectors using a Group Average Agglomerative algorithm using the cosine similarity
measure (Manning et al 2008). Each cluster i defines a state in the DFA, and we say
that a sequence m1:t is in state i if its corresponding forward vector at time t is in
cluster i. The transitions in the DFA are defined using a procedure that looks at how
sequences traverse the states. If a sequence m1:t is at state i at time t − 1, and goes
to state j at time t, then we define a transition from state i to state j with label mt.
This procedure may require merging states to give a consistent DFA, because differ-
ent sequences may define different transitions for the same states and modifiers. After
doing a merge, new merges may be required, so the procedure must be repeated until
a DFA is obtained.

Figure 11 illustrates the DFA construction process showing fictitious forward vec-
tors in a 3 dimensional space. The forward vectors correspond to the prefixes of the
sequence “JJ JJ DT STOP”, a frequent left-modifier sequence for nouns. In this ex-
ample, we construct a 3 state automaton by clustering the vectors into three different
sets and then defining the transitions as described in the previous paragraphs.
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(a) (b)

DT JJ JJ NN
a big red apple

c0 = {α(λ),α(JJ JJ DT STOP)}
c1 = {α(JJ),α(JJ JJ)}
c2 = {α(JJ JJ DT)}

(c) (d)

x

y

z

α(λ)
α(JJ)

α(JJ JJ)

α(JJ JJ DT)

α(JJ JJ DT STOP)

q0

q2

q1

JJ
JJ

DTSTOP

Fig. 11 Example of construction of a 3 state DFA approximation. (a) Concrete example for the modifier
sequence “JJ JJ DT STOP”. (b) Forward vectors α for the prefixes of the sequence. (c) Cosine similarity
clustering. (d) Resulting DFA after adding the transitions.

7.3.2 Experiments on Unlexicalized WFA

A DFA approximation for the automaton (NN,LEFT) is shown in Figure 12. The
vectors were originally divided into ten clusters, but the DFA construction required
two state mergings, leading to a eight state automaton. The state named I is the initial
state. Clearly, we can see that there are special states for punctuation (state 9) and
coordination (states 1 and 5). States 0 and 2 are harder to interpret. To understand
them better, we computed an estimation of the probabilities of the transitions, by
counting the number of times each of them is used. We found that our estimation of
generating STOP from state 0 is 0.67, and from state 2 it is 0.15. Interestingly, state
2 can transition to state 0 generating PRP$, POS or DT, that are usual endings of
modifier sequences for nouns (recall that modifiers are generated head-outwards, so
for a left automaton the final modifier is the left-most modifier in the sentence).

8 Conclusion

The central objective of this paper was to offer a broad view of the main results
in spectral learning in the context of grammatical inference, and more precisely in
the context of learning weighted automata. With this goal in mind, we presented the
recent advances in the field in a way that makes the main underlying principles of
spectral learning accessible to a wide audience.

We believe this to be useful since spectral methods are becoming an interesting
alternative to the classical EM algorithms widely used for grammatical inference. One
of the attractiveness of the spectral approach resides in its computational efficiency
(at least in the context of automata learning). This efficiency might open the door to
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Fig. 12 DFA approximation for the generation of NN left modifier sequences.

large-scale applications of automata learning, where models can be inferred from big
data collections.

Apart from scalability, some important questions about the different properties of
EM versus spectral learning remain unanswered. That been said, in broad terms we
can make two main distinctions between spectral learning and EM:

– EM attempts to minimize the KL divergence between the model distribution and
the observed distribution. In contrast, the spectral method attempts to minimize
an `p distance between model and observed distribution.

– EM searches for stable points of the likelihood function. Instead, the spectral
method finds an approximate minimizer of a global loss function.

Most empirical studies, including ours, suggest that the statistical performance of
spectral methods is similar to that of EM (e.g. see Cohen et al (2013) for experiments
learning latent-variable probabilistic context free grammars). However, our empirical
understanding is still quite limited and more research needs to be done to understand
the relative performance of each algorithm with respect to the complexity of the target
model (i.e., size of the alphabet and number of states). Nonetheless, spectral meth-
ods offer a very competitive computational performance when compared to iterative
methods like EM.

A key difference between the spectral method and other approaches to induce
weighted automata is at the conceptual level, particularly in the way in which the
learning problem is framed. This conceptual difference is precisely what we tried
to emphasize in our presentation of the subject. In a snapshot, the central idea of
the spectral approach to learning functions over Σ? is to directly exploit recurrence
relations satisfied by families of functions. This is done by providing algebraic for-
mulations of these recurrence relations.

Because spectral learning for grammatical inference is still a young field, many
problems remain open. At a technical level, we have already mentioned the two most
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important: how to choose a sample-dependent basis for the Hankel matrices fed to the
method, and how to guarantee that the output WFA is stochastic or probabilistic. The
former problem has been discussed at large in Section 4.2.2, where we gave heuris-
tics for choosing the input parameters given to the algorithm. The latter problem has
received less attention in the present paper, mainly because our experimental frame-
work is not affected by it. However, ensuring the output of the spectral method is a
proper probability distribution is important in many applications. Different solutions
have been proposed to address this issue: Bailly (2011) gave a spectral method for
Quadratic WFA which by definition always define a non-negative function; heuristics
to modify the output of a spectral algorithm in order to enforce non-negativity were
discussed in (Cohen et al 2013) in the context of PCFG, though they also apply to
WFA; for HMM one can use methods based on spectral decomposititions of tensors to
overcome this problem (Anandkumar et al 2012b); one can obtain probabilistic WFA
by imposing some convex constraints on the search space of the optimization-based
spectral method presented in (Balle et al 2012). All these methods rely on variations
of the SVD-based method presented in this paper. An interesting exercise would be
to compare their behavior in practical applications.

Besides these technical questions, several conceptual questions regarding spec-
tral learning and its relations to EM remain open. In particular, we would like to
have a deeper understanding of the relations between EM, spectral learning and split-
merge algorithms, both from a theoretical perspective and from a practical point of
view. On the other hand, the principles that underlie spectral learning can be ap-
plied to any computational or probabilistic model with some notion of locality, in
the sense that the model admits some strong Markov-like conditional independece
assumptions. Several extensions along these lines can already be found in the litera-
ture, but the limits of these techniques remain largely unknown. From the perspective
of grammatical inference, learning beyond stochastic rational languages is the most
promising line of work.
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Fig. 13 Graphical depiction of the inside scores computations for the right half-constituents. Computations
for left half-constituents are symmetrical. (a) Empty right half-constituent (“triangle”). (b) Non-empty
complete right half-constituent (“triangle”). (c) Incomplete right half-constituent (“trapezoid”).

A An Inside-Outside Algorithm for Non-Deterministic SHAG

In this section we sketch an algorithm to compute marginal probabilities of dependencies. Our algorithm
is an adaptation of the parsing algorithm for SHAG by Eisner and Satta (1999) to the case of non-
deterministic head-automata, and has a runtime cost of O(n2N3), where n is the number of states of
the model, and N is the length of the input sentence. Hence the algorithm maintains the standard cubic
cost on the sentence length, while the quadratic cost on n is inherent to the computations defined by our
model in Eq. (2). The main insight behind our extension is that, because the computations of our model
involve state-distribution vectors, we need to extend the standard inside/outside quantities to be in the form
of such state-distribution quantities.6

Throughout this section we assume a fixed sentence s0:N . Let Y(xi:j) be the set of derivations
that yield a subsequence xi:j . For a derivation y, we use root(y) to indicate the root word of it, and
use (xi, xj) ∈ y to refer a dependency in y from head xi to modifier xj . Following Eisner and Satta
(1999), we use decoding structures related to complete half-constituents (or “triangles”, denoted C) and
incomplete half-constituents (or “trapezoids”, denoted I), each decorated with a direction (denoted L and
R). We assume familiarity with their algorithm.

We define θI,R
i,j ∈ Rn as the inside score-vector of a right trapezoid dominated by dependency

(si, sj),

θI,R
i,j =

∑
y∈Y(si:j) : (si,sj)∈y ,

y={〈si,R,x1:t〉} ∪ y′ , xt=sj

P(y′)αsi,R(x1:t) .

The term P(y′) is the probability of head-modifier sequences in the range si:j that do not involve si. The
term αsi,R(x1:t) is a forward state-distribution vector —the qth coordinate of the vector is the probability
that si generates right modifiers x1:t and remains at state q. Similarly, we define φI,R

i,j ∈ Rn as the outside

6 Technically, when working with the projected operators the state-distribution vectors will not be dis-
tributions in the formal sense. However, they correspond to a projection of a state distribution, for some
projection that we do not recover from data (namely a change of basis as discussed in section 2.2). This
projection has no effect on the computations because it cancels out.



Spectral Learning of Weighted Automata 33

(a)

0 N

φC,R
0,N

=

0

s0 . . .

N

sN

(b)

i j

φC,R
i,j

=

k ji

θI,R
k,i φC,R

k,j

(c)

i j

φC,R
i,j

=

i kj + 1

φI,R
i,k

θC,L
j+1,k

(d)

i j

φC,R
i,j

=

i kj + 1

φI,L
i,k

θC,L
j+1,k

(e)

i j

φI,R
i,j

=

i kj

φC,R
i,k

θC,R
j,k

Fig. 14 Graphical depiction of the outside scores computations for the right half-constituents. Compu-
tations for left half-constituents are symmetrical. The dotted shapes correspond to outsides and the solid
shapes correspond to insides.

score-vector of a right trapezoid, as

φI,R
i,j =

∑
y∈Y(s0:isj:n) : root(y)=s0,

y={〈si,R,xt:T 〉} ∪ y′ , xt=sj

P(y′)βsi,R(xt+1:T ) ,

where βsi,R(xt+1:T ) ∈ Rn is a backward state-distribution vector —the qth coordinate is the probability
of being at state q of the right automaton of si and generating xt+1:T . Analogous inside-outside expres-
sions can be defined for the rest of structures (left/right triangles and trapezoids). With these quantities, we
can compute marginals as

µi,j =

{
(θI,R

i,j)
> φI,R

i,j Z
−1 if i < j ,

(θI,L
i,j)
> φI,L

i,j Z
−1 if j < i ,

where Z =
∑

y∈Y(s0:N ) P(y) = (θC,R
0,N )> α?,R

∞ .
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Finally, we sketch the equations for computing inside and outside scores in O(N3) time. The inside
computations are, for 0 ≤ i < j ≤ N :

θC,R
i,i = α

si,R
1 (3)

θC,R
i,j =

∑j
k=i+1

(
(θC,R

k,j)
>α

sk,R
∞

)
θI,R
i,k (4)

θI,R
i,j =

∑j
k=i

(
(θC,L

k+1,j)
>α

sj ,L
∞
)
(A

si,R
sj )>θC,R

i,k (5)

Fig. 13 illustrates these equations. Fig. 13(a) corresponds to the basic case of Eq. 3, and Figs. 13(b)
and 13(c) correspond respectively to Eqs. 4 and 5 for a fixed k.

The outside computations are:

φC,R
0,N = αs0,R

∞ (6)

φC,R
i,j =

∑i−1
k=0

(
(θI,R

k,i)
>φC,R

k,j

)
α

si,R
∞

+
∑n

k=j+1

(
(θC,L

j+1,k)
>α

sk,L
∞

)
A

si,R
sk φI,R

i,k

+
∑n

k=j+1

(
(θC,L

j+1,k)
>A

sk,L
si φI,L

i,k

)
α

si,R
∞ (7)

φI,R
i,j =

∑n
k=j

(
(θC,R

j,k)
>α

sj ,R
∞

)
φC,R

i,k (8)

Fig. 14 illustrates these equations. Fig. 14(a) corresponds to the basic case of Eq. 6. Figs. 14(b), (c)
and (d) correspond to the three members of Eq. 7. Fig. 14(e) corresponds to Eq. 8.


