Spectral Regularization for Max-Margin Sequence Tagging

<u>Ariadna Quattoni</u>^{\heartsuit} Borja Balle^{\diamondsuit} Xavier Carreras^{\heartsuit} Amir Globerson^{∇}

ICML 2014 — June 2014, Beijing

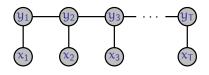
Supported by: XLike EU Project, VISEN EU Project, ISF Centers of Excellence, NSERC and James McGill Research Fund

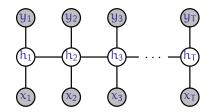
Sequence Tagging

output: hlp-xpatxmxs input: hippopotamus

Fully Observable Models

Latent-variable Models





- $+ \ \ {\sf Making \ predictions \ is \ tractable}$
- + Learning is convex
- Performance crucially depends on features
- + Hidden layer provides more expressivity
- Making predictions is not tractable
- Learning is non-convex (this paper)

Learning Structured Predictors with Latent Variables

Desiderata:

- Expressive scoring functions
- Tractable prediction function
- Effective regularizer
- Convex training procedure

Main Idea: Change of Representation + Relaxation

Problem Formulation

- Scoring functions are Input-Output OOM (generalization of HMM)
- Piecewise Prediction and Loss Function

- Solving the Learning Problem
 - Spectral trick:

optimize over parameters of $f \rightarrow$ optimize low-rank matrix H

- Relax low-rank constraint using nuclear norm of H
- Recover parameters of f from H using the spectral method

IO-OOM for Sequence Tagging

A Convex Formulation for IO-OOM Learning

Experiments

Scoring Functions Computed by IO-OOM

Latent Score $\theta(x, y, h)$:

$$\alpha(h_0) \; \prod_{t=1}^T A_{y_t}^{x_t}(h_{t-1},h_t) \; \beta(h_T) \label{eq:alpha}$$

Scoring Function $F_A(x, y)$:

$$\sum_{h} \theta(\textbf{x},\textbf{y},h) = \boldsymbol{\alpha}^{\mathsf{T}} ~ \boldsymbol{A}_{y_1}^{x_1} \dots \boldsymbol{A}_{y_{\mathsf{T}}}^{x_{\mathsf{T}}} ~ \boldsymbol{\beta}$$

- Model: A : $\langle \alpha, \beta, \{A_b^a\} \rangle$
- Number of states: n
- Initital Weights: $\alpha \in \mathbb{R}^n$
- Final Weights: $\beta \in \mathbb{R}^n$
- Observable Operators $A_b^a \in \mathbb{R}^{n \times n}$

- Expressive Function Family \rightarrow e.g. it includes HMM
- Making Predictions (i.e. maximizing $F_A(x, y)) \rightarrow NP$ -hard

Piecewise Prediction and Loss for IO-OOM

Approximation: $F_A^k(x, y)$:

 $\sum_{t=1}^{T-(k-1)} F_A(x_{t:t+k-1}, y_{t:t+k-1})$

Loss $L_k(x, y, F_A)$:

$$\max_{z} [F_{A}^{k}(x,z) - F_{A}^{k}(x,y) + l(y,z))$$

- Factor size: k
- ► Sum k-grams
- ► Task loss: l(y, z)
 - e.g. hamming distance

 \blacktriangleright Prediction and Loss Function \rightarrow computed in $O(T|Y|^k)$ using the Viterbi Algorithm

Discrete Regularizer for IO-OOM

Learning Problem:

$$\operatorname{argmin}_{A \in \mathcal{F}} \sum_{i=1}^{m} L_{k}(x^{i}, y^{i}, F_{A}) + \tau |A|)$$

Function class (IO-OOM): \mathcal{F}

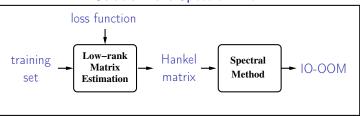
- Training Examples: $\left< x^{i},y^{i}\right>$
- Loss Function: L_k
- Regularizer \rightarrow number of states: |A|
- Trade-off constant: τ
- $k \geqslant 2 \rightarrow$ Non-convex dependence of L_k on parameters of A
- L_k involves polynomials of order k + 3

Optimization Strategy

- + L_k convex on values of $A \rightarrow$ optimization over $(X \times Y)^k$ values
- Three challenges
 - 1. Table of values \rightarrow must correspond to valid IO-OOM
 - 2. Regularizer over table \rightarrow must correspond to #states of IO-OOM
 - 3. Recover parameters of A from this table

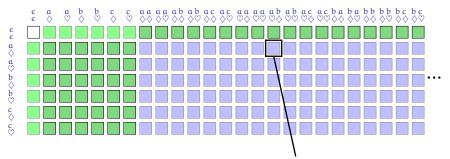
Optimization Strategy

- + L_k convex on values of $A \rightarrow$ optimization over $(X \times Y)^k$ values
- Three challenges
 - 1. Table of values \rightarrow must correspond to valid IO-OOM
 - 2. Regularizer over table \rightarrow must correspond to #states of IO-OOM
 - 3. Recover parameters of A from this table



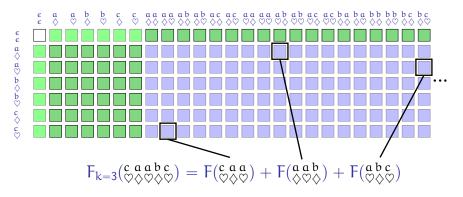
Solution: the Spectral Trick

IO-OOM and Hankel Matrices

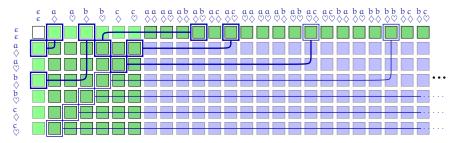


 $F(\begin{smallmatrix}a&a&b\\\diamondsuit&\diamondsuit\diamond\end{smallmatrix})$

IO-OOM and Hankel Matrices



IO-OOM and Hankel Matrices



Hankel Structure:

Fundamental Theorem:

- Equality constraints
- Low-rank constraints

F is realized by an n-state IO-OOM
$$\iff$$
 H has rank at most n for every basis

Max-Margin Completion of Hankel Matrices

Optimization with rank regularization:

 $\underset{\textbf{H} \in \mathbb{H}(\textbf{P},S)}{\operatorname{argmin}} \sum_{i=1}^m L_k(\textbf{x}^i,\textbf{y}^i,\textbf{H}) + \tau \; \text{rank}(\textbf{H})$

Convex relaxation:

 $\underset{\boldsymbol{H} \in \mathbb{H}(\boldsymbol{P},\boldsymbol{S})}{\operatorname{argmin}} \sum_{i=1}^{m} L_k(\boldsymbol{x}^i,\boldsymbol{y}^i,\boldsymbol{H}) + \tau \, ||\boldsymbol{H}||_*$

- Set of Hankel Matrices over some basis: H(P, S)
- Rank regularizer: rank(H)
- Nuclear norm relaxation: $||H||_*$

- Optimization almost equivalent \to we search over IO-OOM that can be recovered from $H\in\mathbb{H}(P,S)$
- Once we solve for H we can recover parameters using the spectral technique

Estimation of Hankel Matrices via Convex Optimization

FOBOS Algorithm: Minimization of $L(H) + \tau \, ||H||_{\ast}$

- Initialize: $H_0 = 0$
- ${\scriptstyle \blacktriangleright}$ while $t \leqslant MaxIter$ do
 - ${\scriptstyle \blacktriangleright}$ Set G_t to a subgradient of L(H) at H_t
 - Set $H_{t+0.5} = H_t \frac{c}{\sqrt{t}}G_t$
 - Calculate the SVD of $H_{t+0.5} = U \Sigma V^{\top}$
 - Define a diagonal matrix Σ' such that $\sigma_i^{'} = max[\sigma_i \nu_t \tau, 0]$
 - set $H_{t+1} = U\Sigma'V^{\top}$

end while

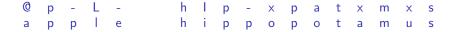
Spectral Recovery

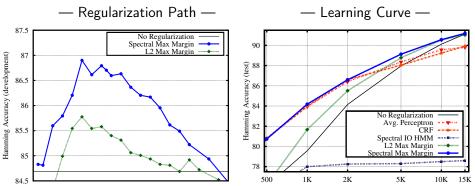
using the method by (Hsu et al. 2009)

Spectral Algorithm for IO-OOM

- Assume F is realized by a minimal n-state IO-OOM A
- \blacktriangleright We are given a basis (P, S) such that H has rank n
- We are given corresponding H^a_b
- To recover parameters of A:
 - Perform SVD to get $H = U\Sigma V^{\top}$
 - Define $A_b^a = (HV)^+ H_b^a V$
- Typical spectral algorithms assume that we can estimate H
- In contrast, we regard H as an optimization variable in a loss minimization procedure

Experiments





Training Samples

Conclusion

- Convex formulation for learning structured prediction models with latent variables and max-sum predictions
- The spectral trick seen as a linearization Polynomial optimization

 \rightarrow

linear optimization over low-rank Hankel matrices

- Generalizable to other losses and structured prediction settings
- Take-home message: Fundamental ideas behind spectral learning have a wide range of applicability for structured prediction

Conclusion

- Convex formulation for learning structured prediction models with latent variables and max-sum predictions
- The spectral trick seen as a linearization Polynomial optimization

 \rightarrow

linear optimization over low-rank Hankel matrices

- · Generalizable to other losses and structured prediction settings
- Take-home message: Fundamental ideas behind spectral learning have a wide range of applicability for structured prediction

For more information: → Come tonight to our poster S63 → On wednesday, Workshop on Method of Moments and Spectral Learning