Spectral Regularization
for Max-Margin Sequence Tagging

Ariadna Quattoni” Borja Balle® Xavier Carreras” Amir GlobersonV

(©) Universitat Politécnica @ MCGill

de Catalunya
(&) McGill University

now at (V) The Hebrew University

Xerox 6) of Jerusalem

Xerox Research Centre Europe

ICML 2014 — June 2014, Beijing

Supported by: XLike EU Project, VISEN EU Project, ISF Centers of Excellence,
NSERC and James McGill Research Fund



Sequence Tagging

output: h | p - x p a X m
input: h i p p o p o a m u
Fully Observable Models Latent-variable Models

1REs

+ Making predictions is tractable + Hidden layer provides more
expressivity

+ Learning is convex
— Making predictions is not tractable

— Performance crucially depends on

features — Learning is non-convex (this paper)



Learning Structured Predictors with Latent Variables

Desiderata:
» Expressive scoring functions
» Tractable prediction function
» Effective regularizer

» Convex training procedure



Main Idea: Change of Representation + Relaxation

» Problem Formulation
» Scoring functions are Input-Output OOM (generalization of HMM)

» Piecewise Prediction and Loss Function

» Solving the Learning Problem

» Spectral trick:
optimize over parameters of f — optimize low-rank matrix H

» Relax low-rank constraint using nuclear norm of H

» Recover parameters of f from H using the spectral method



Outline

» 10-O0OM for Sequence Tagging

» A Convex Formulation for [0O-OOM Learning

» Experiments



Scoring Functions Computed by |O-OOM

Latent Score 6(x,y, h):

. » Model: A («, B, {AL})
a(ho) HAzi(ht—Lht) B(hr)| Number of states: n
t=1 » Initital Weights: o € R™
» Final Weights: p € R™
» Observable Operators Ap € R™ ™

Scoring Function Fa (x,y):

Y0y h)=al A¥L AT B
h

» Expressive Function Family — e.g. it includes HMM

» Making Predictions (i.e. maximizing Fa (x,y)) — NP-hard



Piecewise Prediction and Loss for |IO-OOM

Approximation: F (x,y):

T—(k—1)

2 Fa (Xt:t+k—1. Ut:t+k—1)
t=1

Loss Lk (x,y, Fa):

» Factor size: k
» Sum k—grams
» Task loss: 1(y, z)

e.g. hamming distance

m;X[F]f\(X, z) —Fi(xy) + Uy, 2))

» Prediction and Loss Function — computed in O(T|Y[¥)

using the Viterbi Algorithm



Discrete Regularizer for |I0-OOM

Learning Problem:

m
argmin Z Le(x', y' Fa) + T]A))
AeTF i=1
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Function class (I0-OOM): &
Training Examples: (x',y')

Loss Function: L

Regularizer — number of states: |A|

Trade-off constant: T

» k > 2 — Non-convex dependence of L on parameters of A

» Ly involves polynomials of order k + 3



Optimization Strategy

» Ly convex on values of A — optimization over (X x Y)* values

» Three challenges
1. Table of values — must correspond to valid I0-OOM
2. Regularizer over table — must correspond to #states of [0-OOM
3. Recover parameters of A from this table
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Solution: the Spectral Trick
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|O-OOM and Hankel Matrices

{a,b,c} Y={O, O}

X =

o>

ac aa aa ab ab ac ac

[AVAVIVRVIVAVISRVIVAVIORVIV]
AEEEAEEEE

ab ab ac
OO0V GO

<[ DOOEEAE
<[ DOOEEE
NN NEEE

W gl gD ol 0l D
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|[O-OOM and Hankel Matrices

{a,b,c} Y={, 0}
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Fundamental Theorem:

Hankel Structure:

F is realized by an n-state |0-OOM

H has rank at most n for every basis

» Equality constraints

» Low-rank constraints




Max-Margin Completion of Hankel Matrices

Optimization with rank regularization:

m
argmin 2 Le(x,y* H) + T rank(H) » Set of Hankel Matrices over

HEHPS) i some basis: H(P,S)
Convex relaxation: » Rank regularizer: rank(H)
m

_ o » Nuclear norm relaxation: ||H]|.
argmin Z Li(x', y' H) + T||H|]«
HEH(P,S) i=1

» Optimization almost equivalent — we search over |I0-OOM that can
be recovered from H € H(P, S)

» Once we solve for H we can recover parameters using the spectral
technique



Estimation of Hankel Matrices via Convex Optimization

FOBOS Algorithm: Minimization of L(H) + T ||H||.
» Initialize: Hg =0
» while t < MaxIter do
» Set Gy to a subgradient of L(H) at H,
» Set Hy o5 = Hy — %Gt

» Calculate the SVD of Hy g5 = UZVT
> Define a diagonal matrix £’ such that o} = max[o; — v, 0]
» set Hipp = UZ/VT

end while



Spectral Recovery
using the method by (Hsu et al. 2009)

» Spectral Algorithm for |0-OOM
» Assume F is realized by a minimal n-state [IO-OOM A
» We are given a basis (P, S) such that H has rank n

» We are given corresponding Hp
» To recover parameters of A:

» Perform SVD to get H = UZVT
» Define AL = (HV)THZV
» Typical spectral algorithms assume that we can estimate H

» In contrast, we regard H as an optimization variable in a loss
minimization procedure



Experiments

» Task: Phonetic Transcription (UCI "Nettalk” Dataset)
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Conclusion

» Convex formulation for learning structured prediction models with
latent variables and max-sum predictions

v

The spectral trick seen as a linearization
Polynomial optimization
—

linear optimization over low-rank Hankel matrices
» Generalizable to other losses and structured prediction settings

» Take-home message: Fundamental ideas behind spectral learning have
a wide range of applicability for structured prediction
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For more information: — Come tonight to our poster S63
— On wednesday, Workshop on
Method of Moments and Spectral Learning



