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Sequence Tagging

output: h I p - x p a t x m x s
input: h i p p o p o t a m u s

Fully Observable Models

. . .

x1

y1

x2

y2

xT

yTy3

x3

Latent-variable Models

. . .

x2 xTx3x1

y1 y2 y3 yT

h1 h2 h3 hT

` Making predictions is tractable

` Learning is convex

´ Performance crucially depends on
features

` Hidden layer provides more
expressivity

´ Making predictions is not tractable

´ Learning is non-convex (this paper)



Learning Structured Predictors with Latent Variables

Desiderata:
§ Expressive scoring functions
§ Tractable prediction function
§ Effective regularizer
§ Convex training procedure



Main Idea: Change of Representation + Relaxation

§ Problem Formulation
§ Scoring functions are Input-Output OOM (generalization of HMM)

§ Piecewise Prediction and Loss Function

§ Solving the Learning Problem
§ Spectral trick:

optimize over parameters of f Ñ optimize low-rank matrix H

§ Relax low-rank constraint using nuclear norm of H

§ Recover parameters of f from H using the spectral method



Outline

§ IO-OOM for Sequence Tagging

§ A Convex Formulation for IO-OOM Learning

§ Experiments



Scoring Functions Computed by IO-OOM

Latent Score θpx,y,hq:

αph0q

T
ź

t“1

Axt
yt
pht´1,htq βphT q

Scoring Function FApx,yq:
ÿ

h

θpx,y,hq “ αT Ax1
y1

. . .AxT
yT
β

§ Model: A : xα,β, tAa
buy

§ Number of states: n
§ Initital Weights: α P Rn

§ Final Weights: β P Rn

§ Observable Operators Aa
b P Rnˆn

§ Expressive Function Family Ñ e.g. it includes HMM
§ Making Predictions (i.e. maximizing FApx,yq) Ñ NP-hard



Piecewise Prediction and Loss for IO-OOM

Approximation: FkApx,yq:

T´pk´1q
ÿ

t“1

FApxt:t`k´1,yt:t`k´1q

Loss Lkpx,y, FAq:

max
z
rFkApx, zq ´ F

k
Apx,yq ` lpy, zqq

§ Factor size: k
§ Sum k–grams
§ Task loss: lpy, zq

e.g. hamming distance

§ Prediction and Loss Function Ñ computed in OpT |Y|kq
using the Viterbi Algorithm



Discrete Regularizer for IO-OOM

Learning Problem:

argmin
APF

m
ÿ

i“1

Lkpx
i,yi, FAq ` τ |A|q

§ Function class (IO-OOM): F
§ Training Examples: xxi,yiy
§ Loss Function: Lk
§ Regularizer Ñ number of states: |A|
§ Trade-off constant: τ

§ k ě 2 Ñ Non-convex dependence of Lk on parameters of A
§ Lk involves polynomials of order k` 3



Optimization Strategy

§ Lk convex on values of A Ñ optimization over pXˆ Yqk values

§ Three challenges
1. Table of values Ñ must correspond to valid IO-OOM
2. Regularizer over table Ñ must correspond to #states of IO-OOM
3. Recover parameters of A from this table

Solution: the Spectral Trick

Spectral
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matrix
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IO-OOM and Hankel Matrices

X “ ta,b, cu Y “ t♦,♥u

...

c
♥

b
♦
b
♦

b
♦
a
♥

b
♦
a
♦

b
♦
c
♥

b
♦
c
♦

a
♦
a
♦
a
♦
a
♥

c
♦

b
♥

b
♦

a
♥

a
♦

ε
ε

a
♦
b
♥

a
♦
b
♦

a
♦
c
♦
a
♦
c
♥
a
♥
a
♦
a
♥
a
♥
a
♥
b
♦
a
♥
b
♥
a
♥
c
♦
a
♥
c
♥

c
♥

ε
ε

a
♦

a
♥

b
♦

b
♥

c
♦

b
♦
b
♥

Fpa♦
a
♥
b
♦q

Hankel Structure:

§ Equality constraints
§ Low-rank constraints

Fundamental Theorem:

F is realized by an n-state IO-OOM
ðñ

H has rank at most n for every basis
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Max-Margin Completion of Hankel Matrices

Optimization with rank regularization:

argmin
HPHpP,Sq

m
ÿ

i“1

Lkpx
i,yi,Hq ` τ rankpHq

Convex relaxation:

argmin
HPHpP,Sq

m
ÿ

i“1

Lkpx
i,yi,Hq ` τ ||H||˚

§ Set of Hankel Matrices over
some basis: HpP,Sq

§ Rank regularizer: rankpHq
§ Nuclear norm relaxation: ||H||˚

§ Optimization almost equivalent Ñ we search over IO-OOM that can
be recovered from H P HpP,Sq

§ Once we solve for H we can recover parameters using the spectral
technique



Estimation of Hankel Matrices via Convex Optimization

FOBOS Algorithm: Minimization of LpHq ` τ ||H||˚
§ Initialize: H0 “ 0
§ while t ďMaxIter do

§ Set Gt to a subgradient of LpHq at Ht

§ Set Ht`0.5 “ Ht ´
c?
t
Gt

§ Calculate the SVD of Ht`0.5 “ UΣV
J

§ Define a diagonal matrix Σ 1 such that σ
1

i “ maxrσi ´ νtτ, 0s
§ set Ht`1 “ UΣ

1VJ

end while



Spectral Recovery
using the method by (Hsu et al. 2009)

§ Spectral Algorithm for IO-OOM
§ Assume F is realized by a minimal n-state IO-OOM A
§ We are given a basis pP,Sq such that H has rank n
§ We are given corresponding Ha

b
§ To recover parameters of A:

§ Perform SVD to get H “ UΣVJ
§ Define Aa

b “ pHVq
`Ha

bV

§ Typical spectral algorithms assume that we can estimate H
§ In contrast, we regard H as an optimization variable in a loss
minimization procedure



Experiments

§ Task: Phonetic Transcription (UCI ”Nettalk” Dataset)
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Conclusion

§ Convex formulation for learning structured prediction models with
latent variables and max-sum predictions

§ The spectral trick seen as a linearization
Polynomial optimization
Ñ

linear optimization over low-rank Hankel matrices

§ Generalizable to other losses and structured prediction settings

§ Take-home message: Fundamental ideas behind spectral learning have
a wide range of applicability for structured prediction

For more information: Ñ Come tonight to our poster S63
Ñ On wednesday, Workshop on

Method of Moments and Spectral Learning
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