Abstract
- Max-margin learning of latent-variable sequence predictors
- Function class: Observable Operator Models
- Contributions:
 - Max-margin completion of a Hankel matrix
 - Spectral regularisation for structured prediction
- Learning formulated as convex optimisation

Sequence Tagging
- Task: map input sequences to output sequences
 - **hippopotamus**
 - **hlp x patm x s**
- Task Loss \(f(x, y) \): Hamming distance
- Formulation using a scoring function
 \[F(X \times Y)^T \rightarrow \mathbb{R} \]
 \[\hat{g}(x) = \arg \max_{y \in Y} F(x, y) \]
- Max-margin Structured Prediction: given \(m \) training examples and a class of functions \(\mathcal{H} \) solve
 \[\arg \min_{H \in \mathcal{H}} \sum_{i=1}^{m} L(x_i, y_i; F) + \tau \| H \| \]
 - **non-convex**

Usual Function Classes
- Factorized Linear Models of order \(k \) (e.g. CRF)
 \[F(x, y) = \sum_{t=1}^{T} w \cdot \Phi(x, y_{t-1-k}) \]
 - **tractable but very dependent on \(\Phi \)**
- Latent-variable Models of order \(k \) (e.g. latent SVM, HCRF)
 \[S(x, y, h) = \sum_{t=1}^{T} w \cdot \Phi(x, y_{t-1-k}, h_{t-k}) \]
 \[F(x, y) = \sum_{h} \exp(S(x, y, h)) \]
 - **intractable and learning**

Definition
- \(A = \{X, Y, n, \alpha, (A_{ab}), \beta \} \)
- Alphabets: input \(X \), output \(Y \)
- \(n \) states (i.e., hidden dimensions)
- Initial weights \(\alpha \in \mathbb{R}^n \)
- Final weights \(\beta \in \mathbb{R}^n \)
- Operator for each bi-symbol \(A_{ab} \in \mathbb{R}^{n \times n} \)

Prediction with IO-OOM
- Scoring function using \(h \)
 \[S(x, y, h) = \alpha(h_0) \prod_{t=1}^{T} A_{a_{x_t} y_t}(h_{t-1}, h_t) \beta(h_T) \]
- Scoring function marginalizing \(h \)
 \[F(x, y) = \sum_{h} S(x, y, h) = \alpha^T A_{a_{x_1}} \cdots A_{a_{x_T}} \beta \]
- Global piecewise prediction of order \(k \)
 \[\hat{y}_k(x) = \arg \max_{y} \sum_{t=k+1}^{T} F(x_{t-k}, y_{t-k}) \]

The Hankel Matrix of IO-OOM
- \(\mathcal{X} = \{a, b, c\} \)
 \[\mathcal{Y} = \{\triangle, \nabla\} \]

Convex Optimization
- Objective using Hankel and rank
 \[\arg \min_{H \in \mathbb{R}^{n \times n}} \sum_{i=1}^{m} L(x_i, y_i; H) + \tau \| H \| \]
 - **non-convex**
- Objective using Hankel and nuclear-norm
 \[H_S \in \arg \min_{H \in \mathbb{R}^{n \times n}} \min_{k} \sum_{i=1}^{m} L(x_i, y_i; H) + \tau \| H \| \]
 - **convex**
- We use Forward Backward Splitting (FOBOS) (Duchi & Singer 2011), based on gradient steps and proximal operators.

Experiments
- Phonetic transcription, “Nettalk” data (\(|A| = 26, |Y| = 51 \)) (Sejnowski & Rosenberg, 1987)
- Methods compared:
 - IO-OOM Max-margin
 - Spectral regularisation
 - L^2 regularisation
 - no regularisation
 - Factorized linear model (CRF, avg. perceptron)
 - IO-HMM trained directly with spectral method

Acknowledgements
This work was supported by projects XLike (FP7-288342), ERA-Net CHISTERA VISETN, TACARDI (TIN2012-38523-C02-00) and by the IFSC Centers of Excellence (grant 1789/11). X. Carreras was supported by the Ramón y Cajal program of the Spanish Government (RYC-2008-02223). B. Balle received support from NSERC and the James McGill Research Fund. Xerox Research Centre Europe (XRCE) provided travel support for A. Quattoni and X. Carreras.