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— Abstract —
I Max-margin learning of latent-variable sequence
predictors

I Function class: Observable Operator Models
I Contributions:

? Max-margin completion of a Hankel matrix
? Spectral regularization for structured prediction
? Learning formulated as convex optimization

— Sequence Tagging —
I Task: map input sequences to output sequences

h i p p o p o t a m u s
h I p - x p a t x m x s

I Task Loss `(·, ·): Hamming distance
I Formulation using a scoring function

F : (X × Y)?→ R
ŷ(x) = argmax

y∈YT
F(x, y)

I Max-margin Structured Prediction: given m
training examples and a class of functions F solve

argmin
F∈F

m∑
i=1

L(xi, yi; F) + τR(F)

I L(x, y; F) is the structured hinge loss
L(x, y; F) = max

z
[F(x, z) − F(x, y) + `(y, z)]

I R(F) is a regularization penalty for F

— Usual Function Classes —
I Factorized Linear Models of order k (e.g. CRF)

F(x, y) =

T∑
t=k+1

w ·φ(x, yt−k:t)

→ tractable but very dependent on φ ←
I Latent-variable Models of order k
(e.g. latent SVM, HCRF)

S(x, y, h) =

T∑
t=k+1

w ·φ(x, yt−k:t, ht−k:t)

F(x, y) =
∑
h

exp{S(x, y, h)}

→ intractable prediction and learning ←

— IO-OOM: Input-Output Observable Operator Models —

— Definition —
A = 〈X ,Y, n,α, {Aa,b},β〉
I Alphabets: input X , output Y
I n states (i.e., hidden dimensions)
I Initial weights α ∈ Rn
I Final weights β ∈ Rn
I Operator for each bi-symbol

Aσ,δ ∈ Rn×n σ ∈ X , δ ∈ Y

— Learning IO-OOM —
I Regularizer: number of states n = |A|

I Piecewise objective

argmin
A∈F

m∑
i=1

L(xi, yi; Fk) + τ |A|

→ non-convex ←

— Prediction with IO-OOM —
I Scoring function using h

S(x, y, h) = α(h0)

 T∏
t=1

Axt,yt(ht−1, ht)

β(hT)
I Scoring function marginalizing h

F(x, y) =
∑
h

S(x, y, h) = α>Ax1,y1 · · ·AxT ,yTβ

I Global piecewise prediction of order k

ŷk(x) = argmax
y

T∑
t=k+1

F(xt−k:t, yt−k:t)

= argmax
y

Fk(x, y)

— The Hankel Matrix of IO-OOM — X = {a, b, c} Y = {♦,♥}
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I Definition: H ∈ RP×S for A, using prefix-suffix sets (P,S) as basis, with: H((u,w), (v, z)) = F(uv,wz)

I The Fundamental Theorem of Weighted Automata (Schützenberger 1961; Carlyle & Paz 1971; Fliess 1974):
F computed by A with n states ⇐⇒ rank(H) ≤ n for any basis (P,S)

I Main advantage: piecewise objective L is convex with respect to H

I Method:

1. Obtain H optimizing L, via matrix completion techniques (Balle & Mohri 2012)
2. Recover A from H using the spectral method of (Hsu, Kakade & Zhang 2009)
2a. Take the reduced SVD of Hε,ε = UΣV>
2b. Aσ,δ = (Hε,εV)+Hσ,δV ; α> = h>PV ; β = (Hε,εV)+hS

— Convex Optimization —
I Objective using Hankel and rank

argmin
H∈H(P,S)

m∑
i=1

L(xi, yi;H) + τ rank(H)

→ non-convex ←
I Objective using Hankel and nuclear-norm

ĤS ∈ argmin
H∈H(P,S)

m∑
i=1

L(xi, yi;H) + τ ‖H‖∗

→ convex ←
I We use Forward Backward Splitting
(FOBOS) (Duchi & Singer 2011), based on
gradient steps and proximal operators.

— Experiments —
I Phonetic transcription, “Nettalk” data
(|X | = 26, |Y | = 51) (Sejnowski & Rosenberg, 1987)

I Methods compared:
I IO-OOM Max-margin with

I Spectral regularization
I L2 regularization
I no regularization

I Factorized linear model (CRF, avg. perceptron)
I IO-HMM trained directly with spectral method
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