
Learning Task-specific Bilexical Embeddings

Pranava Swaroop Madhyastha Xavier Carreras Ariadna Quattoni
TALP Research Center

Universitat Politècnica de Catalunya
Campus Nord UPC, Barcelona

pranava,carreras,aquattoni@lsi.upc.edu

Abstract

We present a method that learns bilexical operators over distributional representations of words
and leverages supervised data for a linguistic relation. The learning algorithm exploits low-
rank bilinear forms and induces low-dimensional embeddings of the lexical space tailored for
the target linguistic relation. An advantage of imposing low-rank constraints is that prediction
is expressed as the inner-product between low-dimensional embeddings, which can have great
computational benefits. In experiments with multiple linguistic bilexical relations we show that
our method effectively learns using embeddings of a few dimensions.

1 Introduction

We address the task of learning functions that compute compatibility scores between pairs of lexical
items under some linguistic relation. We refer to these functions as bilexical operators. As an instance of
this problem, consider learning a model that predicts the probability that an adjective modifies a noun in
a sentence. In this case, we would like the bilexical operator to capture the fact that some adjectives are
more compatible with some nouns than others. For example, a bilexical operator should predict that the
adjective electronic has high probability of modifying the noun device but little probability of modifying
the noun case.

Bilexical operators can be useful for multiple NLP applications. For example, they can be used to
reduce ambiguity in a parsing task. Consider the following sentence extracted from a weblog: Vynil
can be applied to electronic devices and cases, wooden doors and furniture and walls. If we want to
predict the dependency structure of this sentence we need to make several decisions. In particular, the
parser would need to decide (1) Does electronic modify devices? (2) Does electronic modify cases? (3)
Does wooden modify doors? (4) Does wooden modify furniture? Now imagine that in the corpus used to
train the parser none of these nouns have been observed, then it is unlikely that these attachments can be
resolved correctly. However, if an accurate noun-adjective bilexical operator were available most of the
uncertainty could be resolved. This is because a good bilinear operator would give high probability to the
pairs electronic-device, wooden-door, wooden-furniture and low probability to the pair electronic-case.

The simplest way of inducing a bilexical operator is to learn it from a training corpus. That is, assuming
that we are given some data annotated with a linguistic relation between a modifier and a head (e.g.
adjective and noun) we can simply build a maximum likelihood estimator for Pr(m | h) by counting the
occurrences of modifiers and heads under the target relation. For example, we could consider learning
bilexical operators from sentences annotated with dependency structures. Clearly, this model can not
generalize to head words not present in the training data.

To mitigate this we could consider bilexical operators that can exploit lexical embeddings, such as
a distributional vector-space representation of words. In this case, we assume that for every word we
can compute an n-dimensional vector space representation φ(w) → Rn. This representation typically
captures distributional features of the context in which the lexical item can occur. The key point is that
we do not need a supervised corpus to compute the representation. All we need is a large textual corpus
to compute the relevant statistics. Once we have the representation we can exploit operations in the
induced vector space to define lexical compatibility operators. For example we could define a bilexical

operator as:

Pr(m | h) =
exp {〈φ(m), φ(h)〉}∑
m′ exp {〈φ(m′), φ(h)〉}

(1)

where 〈φ(x), φ(y)〉 denotes the inner-product. Alternatively, given an initial high-dimensional distribu-
tional representation computed from a large textual corpus we could first induce a projection to a lower
k dimensional space by performing truncated singular value decomposition. The idea is that the lower
dimensional representation will be more efficient and it will better capture the relevant dimensions of the
distributional representation. The bilexical operator would then take the form of:

Pr(m|h) =
exp {〈Uφ(m), Uφ(h)〉}∑
m′ exp {〈Uφ(m′), Uφ(h)〉}

(2)

where U ∈ Rk×n is the projection matrix obtained via SVD. The advantage of this approach is that as
long as we can estimate the distribution of contexts of words we can compute the value of the bilexical
operator. However, this approach has a clear limitation: to design a bilinear operator for a target linguistic
relation we must design the appropriate distributional representation. Moreover, there is no clear way of
exploiting a supervised training corpus.

In this paper we combine both the supervised and distributional approaches and present a learning
algorithm for inducing bilexical operators from a combination of supervised and unsupervised training
data. The main idea is to define bilexical operators using bilinear forms over distributional representa-
tions: φ(x)>Wφ(y), where W ∈ Rn×n is a matrix of parameters. We can then train our model on the
supervised training corpus via conditional maximum-likelihood estimation. To induce a low-dimensional
representation, we first observe that the implicit dimensionality of the bilinear form is given by the rank
ofW . In practice controlling the rank ofW can result in important computational savings in cases where
one evaluates a target word x against a large number of candidate words y: this is because we can project
the representations φ(x) and φ(y) down to the low-dimensional space where evaluating the function is
simply an inner-product. This setting is in fact usual, for example for lexical retrieval applications (e.g.
given a noun, sort all adjectives in the vocabulary according to their compatibility), or for parsing (where
one typically evaluates the compatibility between all pairs of words in a sentence).

Consequently with these ideas, we propose to regularize the maximum-likelihood estimation using
a nuclear norm regularizer that serves as a convex relaxation to the rank function. To minimize the
regularized objective we make use of an efficient iterative proximal method that involves computing the
gradient of the function and performing singular value decompositions.

We test the proposed algorithm on several linguistic relations and show that it can predict modifiers
for unknown words more accurately than the unsupervised approach. Furthermore, we compare different
types of regularizers for the bilexical operatorW , and observe that indeed the low-rank regularizer results
in the most efficient technique at prediction time.

In summary, the main contributions of this paper are:

• We propose a supervised framework for learning bilexical operators over distributional representa-
tions, based on learning bilinear forms W .

• We show that we can obtain low-dimensional compressions of the distributional representation by
imposing low-rank constraints to the bilinear form. Combined with supervision, this results in
lexical embeddings tailored for a specific bilexical task.

• In experiments, we show that our models generalize well to unseen word pairs, using only a few
dimensions, and outperforming standard unsupervised distributional approaches. We also present
an application to prepositional phrase attachment.

2 Bilinear Models for Bilexical Predictions

2.1 Definitions
Let V be a vocabulary, and let x ∈ V denote a word. Let H ⊆ V be a set of head words, andM⊆ V be
a set of modifier words. In the noun-adjective relation example, H is the set of nouns andM is the set

of adjectives.
The task is as follows. We are given a training set of l tuples D = {(m,h)1, . . . , (m,h)l}, where

m ∈ M and h ∈ H and we want to learn a model of the conditional distribution Pr(m | h). We want
this model to perform well on all head-modifier pairs. In particular we will test the performance of the
model on heads that do not appear in D.

We assume that we are given access to a distributional representation function φ : V → Rn, where
φ(x) is the n-dimensional representation of x. Typically, this function is computed from an unsupervised
corpus. We use φ(x)[i] to refer to the i-th coordinate of the vector.

2.2 Bilinear Model

Our model makes use of the bilinear form W : Rn × Rn → R, where W ∈ Rn×n, and evaluates as
φ(m)>Wφ(h). We define the bilexical operator as:

Pr(m | h) =
exp

{
φ(m)>Wφ(h)

}∑
m′∈M exp {φ(m′)>Wφ(h)}

(3)

Note that the above model is nothing more than a conditional log-linear model defined over n2 fea-
tures fi,j(m,h) = φ(m)[i]φ(h)[j] (this can be seen clearly when we write the bilinear form as∑n

i=1

∑n
j=1 fi,j(m,h)Wi,j . The reason why it is useful to regard W as a matrix will become evident in

the next section.
Before moving to the next section, let us note that the unsupervised SVD model in Eq. (2) is also a

bilinear model as defined here. This can be seen if we set W = UU>, which is a bilinear form of rank
k. The key difference is in the way W is learned using supervision.

3 Learning Low-rank Bilexical Operators

3.1 Low-rank Optimization

Given a training set D and a feature function φ(x) we can do standard conditional max-likelihood opti-
mization and minimize the negative of the log-likelihood function, log Pr(D):∑

(m,h)∈D

φ(m)>Wφ(h)− log
∑

m′∈M
exp

{
φ(m′)>Wφ(h)

}
(4)

We would like to control the complexity of the learned model by including some regularization penalty.
Moreover, like in the low-dimensional unsupervised approach we want our model to induce a low-
dimensional representation of the lexical space. The first observation is that the bilinear form computes
a weighted inner product in some space. Consider the singular value decomposition: W = UΣV . We
can write the bilinear form as: [φ(m)>U] Σ [V φ(h)], thus we can regard m̃ = φ(m)>U as a projection
of m and h̃ = V φ(h) as a projection of h. Then the bilinear form can be written as:

∑n
i=1 Σ[i,i] m̃[i] h̃[i].

The rank of W defines the dimensionality of the induced space. It is easy to see that if W has rank k it
can be factorized as UΣV where U ∈ Rn×k and V ∈ Rk×n.

Since the rank of W determines the dimensionality of the induced space, it would be reasonable to
add a rank minimization penalty in the objective in (4). Unfortunately this would lead to a non-convex
regularized objective. Instead, we propose to use as a regularizer a convex relaxation of the rank function,
the nuclear norm ‖W‖∗ (the `1 norm of the singular values of W). Putting it all together, our learning
algorithm minimizes: ∑

(m,h)∈D

− log Pr(m | h)) + λ‖W‖∗ (5)

Here λ is a constant that controls the trade-off between fitting the data and the complexity of the model.
This objective is clearly convex since both the objective and the regularizer are convex. To minimize it
we use the a proximal gradient algorithm which is described next.

3.2 A Proximal Algorithm for Bilexical Operators
We now describe the learning algorithm that we use to induce the bilexical operators from training data.
We are interested in minimizing the objective (5), or in fact a more general version where we can replace
the regularizer ‖W‖∗ by standard `1 or `2 penalties. For any convex regularizer r(W) (namely `1, `2 or
the nuclear norm) the objective in (5) is convex. Our learning algorithm is based on a simple optimization
scheme known as forward-backward splitting (FOBOS) (Duchi and Singer, 2009).

This algorithm has convergence rates in the order of 1/ε2, which we found sufficiently fast for our
application. Many other optimization approaches are possible, for example one could express the regu-
larizer as a convex constraint and utilize a projected gradient method which has a similar convergence
rate. Proximal methods are slightly more simple to implement and we chose the proximal approach.

The FOBOS algorithm works as follows. In a series of iterations t = 1 . . . T compute parameter
matrices Wt as follows:

1. Compute the gradient of the negative log-likelihood, and update the parameters

Wt+0.5 = Wt − ηtg(Wt)

where ηt = c√
t

is a step size and g(Wt) is the gradient of the loss at Wt.

2. Update Wt+0.5 to take into account the regularization penalty r(W), by solving

Wt+1 = argmin
W

||Wt+0.5 −W ||22 + ηtλr(W)

For the regularizers we consider, this step is solved using the proximal operator associated with the
regularizer. Specifically:

• For `1 it is a simple thresholding:

Wt+1(i, j) = sign(Wt+0.5(i, j)) ·max(Wt+0.5(i, j)− ηtλ, 0)

• For `2 it is a simple scaling:

Wt+1 =
1

1 + ηtλ
Wt+0.5

• For nuclear-norm, perform SVD thresholding. Compute the SVD to write Wt+0.5 = USV >

with S a diagonal matrix and U, V orthogonal matrices. Denote by σi the i-th element on the
diagonal of S. Define a new matrix S̄ with diagonal elements σ̄i = max(σi − ηtλ, 0). Then
set

Wt+1 = US̄V >

Optimizing a bilinear model using nuclear-norm regularization involves the extra cost of performing
SVD of W at each iteration. In our experiments the dimension of W was 2, 000× 2, 000 and computing
SVD was fast, much faster than computing the gradient, which dominates the cost of the algorithm. The
optimization parameters of the method are the regularization constant λ, the step size constant c and the
number of iterations T . In our experiments we ran a range of λ and c values for 200 iterations, and used
a validation set to pick the best configuration.

4 Related Work

Research in learning representations for natural language processing can be broadly classified into
two different paradigms based on the learning setting: unsupervised representation learning and semi-
supervised representation learning. Unsupervised representation learning does not require any supervised
training data, while semi-supervised representation learning requires the presence of supervised training
data with the potential advantage that it can adapt the representation to the task at hand.

Unsupervised approaches to learning representations mainly involve representations that are learned
not for a specific task, rather a variety of tasks. These representations rely more on the property of

abstractness and generalization. Further, unsupervised approaches can be roughly categorized into (a)
clustering-based approaches that make use of clusters induced using a notion of distributed similarity
and are used as features (Liang, 2005; Koo et al., 2008; Ratinov and Roth, 2009; Zhao et al., 2009;
Lin and Wu, 2009); (b) neural-network-based representations that focus on learning multilayer neural
network in a way to extract features from the data (Morin and Bengio, 2005; Bengio and Sénécal, 2008;
Mnih and Hinton, 2009); (c) pure distributional approaches that principally follow the distributional
assumption that the words which share a set of contexts are similar (Sahlgren, 2006; Turney and Pantel,
2010; Dumais et al., 1988; Landauer et al., 1998; Lund et al., 1995; Väyrynen et al., 2007).

We also induce lexical embeddings, but in our case we employ supervision. That is, we follow a
semi-supervised paradigm for learning representations. Semi-supervised approaches initially learn rep-
resentations typically in an unsupervised setting and then induce a representation that is jointly learned
for the task with a labeled corpus. A high-dimensional representation is extracted from unlabeled data,
while the supervised step compresses the representation to be low-dimensional in a way that favors the
the task at hand.

Collobert and Weston (2008) present a neural network language model, where given a sentence, it
performs a set of language processing tasks (from part of speech tagging, chunking, extracting named
entity, extracting semantic roles and decisions on the correctness of the sentence) by using the learned
representations. The representation itself is extracted from unlabeled corpora, while all the other tasks
are jointly trained on labeled corpus.

(Socher et al., 2011a; Socher et al., 2011b) present a model based on recursive neural networks that
learns vector space representations for words, multi-word phrases and sentences. Given a sentence with
its syntactic structure, their model assings vector representations to each of the lexical tokens of the
sentence, and then traverses the syntactic tree bottom-up, such that at each node a vector representation
of the corresponding phrase is obtained by composing the vectors associated with the children.

Bai et al. (2010) use a technique similar to ours, using bilinear forms with low-rank constraints. In
their case, they explicitly look for a low-rank factorization of the matrix, making their optimization
non-convex. As far as we know, ours is the first convex formulation, where we employ a relaxation
of the rank (i.e. the nuclear norm) to make the objective convex. They apply the method to document
ranking, and thus optimize a max-margin ranking loss. In our application to bilexical models, we perform
conditional max-likelihood estimation. Hutchinson et al. (2013) propose an explicitly sparse and low-
rank maximum-entropy language model. The sparse plus low rank setting is learned in such a way that
the low rank component learns the regularities in the training data and the sparse component learns the
exceptions like multiword expressions etc.

Chechik et al. (2010) also learned bilinear operators using max-margin techniques, with pairwise
similarity as supervision, but they did not consider low-rank constraints.

One related area where bilinear operators are used to induce embeddings is distance metric learning.
Weinberger and Saul (2009) used large-margin nearest neighbor methods to learn a non-sparse embed-
ding, but these are computationally intensive and might not be suitable for large-scale tasks in NLP.

5 Experiments on Syntactic Relations

We conducted a set of experiments to test the ability of our algorithm to learn bilexical operators for
several linguistic relations. As supervised training data we use the gold standard dependencies of the
WSJ training section of the Penn Treebank (Marcus et al., 1993). We consider the following relations:

• Noun-Adjective: we model the distribution of adjectives given a noun; and a separate distribution
of nouns given an adjective.

• Verb-Object: we model the distribution of object nouns given a verb; and a separate distribution of
verbs given an object.

• Prepositions: in this case we consider bilexical operators associated with a preposition, which model
the probability of a head noun or verb above the preposition given the noun below the preposition.
We present results for prepositional relations given by “with”, “for”, “in” and “on”.

 50

 55

 60

 65

 70

 75

 80

 85

 90

1e3 1e4 1e5 1e6 1e7 1e8

p
a
ir
w

is
e
 a

c
c
u
ra

c
y

number of operations

Adjectives given Noun

unsupervised
NN
L1
L2 66

 68

 70

 72

 74

 76

 78

 80

1e3 1e4 1e5 1e6 1e7 1e8

p
a
ir
w

is
e
 a

c
c
u
ra

c
y

number of operations

Nouns given Adjective

unsupervised
NN
L1
L2

 46

 48

 50

 52

 54

 56

 58

 60

 62

1e3 1e4 1e5 1e6 1e7 1e8

p
a
ir
w

is
e
 a

c
c
u
ra

c
y

number of operations

Objects given Verb

unsupervised
NN
L1
L2

 60

 65

 70

 75

 80

1e3 1e4 1e5 1e6 1e7 1e8

p
a
ir
w

is
e
 a

c
c
u
ra

c
y

number of operations

Verbs given Object

unsupervised
NN
L1
L2

Figure 1: Pairwise accuracy with respect to the number of double operations required to compute the
distribution over modifiers for a head word. Plots for noun-adjective and verb-object relations, in both
directions.

The distributional representation φ(x) was computed using the BLLIP corpus (Charniak et al., 2000).
We compute a bag-of-words representation for the context of each lexical item, that is φ(w)[i] corre-
sponds to the frequency of word i appearning in the context of w. We use a context window of size 10
and restrict our bag-of-words vocabulary to contain only the 2,000 most frequent words present in the
corpus. Vectors were normalized.

To test the performance of our algorithm for each relation we partition the set of heads into a training
and a test set, 60% of the heads are use for training, 10% of the heads are used for validation and 30% of
the heads are used for testing. Then, we consider all observed modifiers in the data to form a vocabulary
of modifier words. The goal of this task is to learn conditional distribution over all these modifers given
a head word without context. In our experiments, the number of modifiers per relation ranges from 2,500
to 7,500 words. For each head word, we create a list of compatible modifiers from the annotated data, by
taking all modifiers that occur at least once with the head. Hence, for each head the set of all modifiers
is partitioned into compatible and non-compatible. For testing, we measure a pairwise accuracy, the

 50

 55

 60

 65

 70

 75

1e3 1e4 1e5 1e6 1e7 1e8

p
a
ir
w

is
e
 a

c
c
u
ra

c
y

number of operations

With

unsupervised
NN
L1
L2

 54

 56

 58

 60

 62

 64

 66

 68

 70

 72

1e3 1e4 1e5 1e6 1e7 1e8

p
a
ir
w

is
e
 a

c
c
u
ra

c
y

number of operations

For

unsupervised
NN
L1
L2

 46

 48

 50

 52

 54

 56

 58

1e3 1e4 1e5 1e6 1e7 1e8

p
a
ir
w

is
e
 a

c
c
u
ra

c
y

number of operations

In

unsupervised
NN
L1
L2

 60

 62

 64

 66

 68

 70

 72

 74

 76

 78

 80

1e3 1e4 1e5 1e6 1e7 1e8

p
a
ir
w

is
e
 a

c
c
u
ra

c
y

number of operations

On

unsupervised
NN
L1
L2

Figure 2: Pairwise accuracy with respect to the number of double operations required to compute the
distribution over modifiers for a head word. Plots for four prepositional relations: with, for, in, on. The
distributions are of verbs and objects above the preposition given the noun below the preposition.

percentage of compatible/non-compatible pairs of modifiers where the former obtains higher probability.
Let us stress that none of the test head words has been observed in training, while the list of modifiers is
the same for training, validation and testing.

We compare the performance of the bilexical model trained with nuclear norm regularization (NN)
with other regularization penalties (L1 and L2). We also compare these supervised methods with an
unsupervised model: a low-dimensional SVD model as in Eq. (2), which corresponds to an inner product
as in Eq. (1) when all dimensions are considered.

To report performance, we measure pairwise accuracy with respect to the capacity of the model in
terms of number of active parameters. To measure the capacity of a model we consider the number of
double operations that are needed to compute, given a head, the scores for all modifiers in the vocabulary
(we exclude the exponentiations and normalization needed to compute the distribution of modifiers given
a head, since this is a constant cost for all the models we compare, and is not needed if we only want to
rank modifiers). Recall that the dimension of φ(x) is n, and assume that there are m total modifiers in

Noun Predicted Adjectives
president executive, senior, chief, frank, former, international, marketing,

assistant, annual, financial
wife former, executive, new, financial, own, senior, old, other, deputy,

major
shares annual, due, net, convertible, average, new, high-yield, initial,

tax-exempt, subordinated
mortgages annualized, annual, three-month, one-year, average, six-month,

conventional, short-term, higher, lower
month last, next, fiscal, first, past, latest, early, previous, new, current

problem new, good, major, tough, bad, big, first, financial, long, federal
holiday new, major, special, fourth-quarter, joint, quarterly, third-quarter,

small, strong, own

Table 1: 10 most likely adjectives for some test nouns.

the vocabulary. In our experiments n = 2, 000 and m ranges from 2, 500 to 7, 500. The correspondances
with operations are:

• Assume that the L1 and L2 models have k non-zero weights in W . Then the number of operations
to compute a distribution is km.

• Assume that the NN and the unsupervised models have rank k. We assume that the modifier vectors
are alredy projected down to k dimensions. For a new head, one needs to project it and perform m
inner products, hence the number of operations is kn+ km.

Figure 1 shows the performance of models for noun-adjective and verb-object relations, while Figure 2
shows plots for prepositional relations. 1 The first observation is that supervised approaches outperform
the unsupervised approach. In cases such as noun-adjetive relations the unsupervised approach performs
close to the supervised approaches, suggesting that the pure distributional approach can sometimes work.
But in most relations the improvement obtained by using supervision is very large. When comparing the
type of regularizer, we see that if the capacity of the model is unrestricted (right part of the curves), all
models tend to perform similarly. However, when restricting the size, the nuclear-norm model performs
much better. Roughly, 20 hidden dimensions are enough to obtain the most accurate performances
(which result in∼ 140, 000 operations for initial representaions of 2, 000 dimensions and 5, 000 modifier
candidates). As an example of the type of predictions, Table 1 shows the most likely adjectives for some
test nouns.

6 Experiments on PP Attachment

We now switch to a standard classification task, prepositional phrase attachment, that we frame as a
bilexical prediction task. We start from the formulation of the task as a binary classification problem by
Ratnaparkhi et al. (1994): given a tuple x = 〈v, o, p, n〉 consisting of a verb v, noun object o, preposition
p and noun n, decide if the prepositional phrase p-n attaches to v (y = V) or to o (y = O). For example,
in 〈 meet,demand,for,products〉 the correct attachment is O.

Ratnaparkhi et al. (1994) define a linear maximum likelihood model of the form
Pr(y | x) = exp{〈w, f(x, y)〉} ∗ Z(x)−1, where f(x, y) is a vector of d features, w is a parame-
ter vector in Rd, and Z(x) is the normalizer summing over y = {V, O}. Here we define a bilexical
model of the form that uses a distributional representation φ:

Pr(V|〈v, o, p, n〉) =
exp{φ(v)>W p

V φ(n)}
Z(x)

Pr(O|〈v, o, p, n〉) =
exp{φ(o)>W p

O φ(n)}
Z(x)

(6)

1To obtain curves for each model type with respect to a range of number of operations, we first obtained the best model on
validation data and then forced it to have at most k non-zero features or rank k by projecting, for a range of k values.

 55

 60

 65

 70

 75

 80

for from with

a
tt

a
c
h

m
e

n
t

a
c
c
u

ra
c
y

bilinear L1
bilinear L2

bilinear NN
linear

interpolated L1
interpolated L2

interpolated NN

Figure 3: Attachment accuracies of linear, bilinear and interpolated models for three prepositions.

The bilinear model is parameterized by two matricesWV andWO per preposition, each of which captures
the compatibility between nouns below a certain preposition and heads of V or O prepositional relations,
respectively. Again Z(x) is the normalizer summing over y = {V, O}, but now using the bilinear form.
It is straighforward to modify the learning algorithm in Section 3 such that the loss is a negative log-
likelihood for binary classification, and the regularizer considers the sum of norms of the model matrices.

We ran experiments using the data by Ratnaparkhi et al. (1994). We trained separate models for
different prepositions, focusing on the prepositions that are more ambiguous: for, from, with.
We compare to a linear “maxent” model following Ratnaparkhi et al. (1994) that uses the same feature
set. Figure 3 shows the test results for the linear model, and bilinear models trained with L1, L2, NN
regularization penalties. The results of the bilinear models are significantly below the accuracy of the
linear model, suggesting that some of the non-lexical features of the linear model (such as prior weighting
of the two classes) might be difficult to capture by the bilinear model over lexical representations. To
check if the bilinear model might complement the linear model or just be worse than it, we tested simple
combinations based on linear interpolations. For a constant λ ∈ [0, 1] we define:

Pr(y | x) = λ PrL(y | x) + (1− λ) PrB(y | x) . (7)

We search for the best λ on the validation set, and report results of combining the linear model with
each of the three bilinear models. Results are shown also in Figure 3. Interpolation models improve over
linear models, though only the improvement for for is significant (2.6%). Future work should exploit
finer combinations between standard linear features and distributional bilinear forms.

7 Conclusions

We have presented a model for learning bilexical operators that can leverage both supervised and unsu-
pervised data. The model is based on exploiting bilinear forms over distributional representations. The
learning algorithm induces a low-dimensional representation of the lexical space by imposing low-rank
constraints on the parameters of the bilinear form. By means of supervision, our model induces two
low-dimensional lexical embeddings, one on each side of the bilexical linguistic relation, and compu-
tations can be expressed as an inner-product between the two embeddings. This factorized form of the
model can have great computational advantages: in many applications one needs to evaluate the function
multiple times for a fixed set of lexical items, for example in dependency parsing. Hence, one can first
project the lexical items to their embeddings, and then compute all pairwise scores as inner-products. In
experiments, we have shown that the embeddings we obtain in a number of linguistic relations can be
modeled with a few hidden dimensions.

As future work, we would like to apply the low-rank approach to other model forms that can employ
lexical embeddings, specially when supervision is available. For example, dependency parsing models,
or models of predicate-argument structures representing semantic roles, exploit bilexical relations. In
these applications, being able to generalize to word pairs that are not observed during training is essential.

We would also like to study how to combine low-rank bilexical operators, which in essence induce
a task-specific representation of words, with other forms of features that capture class or contextual
information. One desires that such combinations can preserve the computational advantages behind
low-rank embeddings.

Acknowledgements

We thank the reviewers for their helpful comments. This work was supported by projects XLike (FP7-
288342), ERA-Net CHISTERA VISEN and TACARDI (TIN2012-38523-C02-00). Xavier Carreras was
supported by the Ramón y Cajal program of the Spanish Government (RYC-2008-02223).

References
Bing Bai, Jason Weston, David Grangier, Ronan Collobert, Kunihiko Sadamasa, Yanjun Qi, Olivier Chapelle, and

Kilian Weinberger. 2010. Learning to rank with (a lot of) word features. Information Retrieval, 13(3):291–314,
June.

Yoshua Bengio and Jean-Sébastien Sénécal. 2008. Adaptive importance sampling to accelerate training of a neural
probabilistic language model. IEEE Transactions on Neural Networks, 19(4):713–722.

Eugene Charniak, Don Blaheta, Niyu Ge, Keith Hall, and Mark Johnson. 2000. BLLIP 1987–89 WSJ Corpus
Release 1, LDC No. LDC2000T43. Linguistic Data Consortium.

Gal Chechik, Varun Sharma, Uri Shalit, and Samy Bengio. 2010. Large scale online learning of image similarity
through ranking. Journal of Machine Learning Research, pages 1109–1135.

Ronan Collobert and Jason Weston. 2008. A unified architecture for natural language processing: Deep neural
networks with multitask learning. In Proceedings of the 25th International Conference on Machine Learning,
ICML ’08, pages 160–167, New York, NY, USA. ACM.

John Duchi and Yoram Singer. 2009. Efficient online and batch learning using forward backward splitting. Journal
of Machine Learning Research, 10:2899–2934.

Susan T. Dumais, George W. Furnas, Thomas K. Landauer, Scott Deerwester, and Richard Harshman. 1988. Using
latent semantic analysis to improve access to textual information. In SIGCHI Conference on Human Factors in
Computing Systems, pages 281–285. ACM.

Brian Hutchinson, Mari Ostendorf, and Maryam Fazel. 2013. Exceptions in language as learned by the multi-
factor sparse plus low-rank language model. In ICASSP, pages 8580–8584.

Terry Koo, Xavier Carreras, and Michael Collins. 2008. Simple semi-supervised dependency parsing. In Pro-
ceedings of ACL-08: HLT, pages 595–603, Columbus, Ohio, June. Association for Computational Linguistics.

Thomas K. Landauer, Peter W. Foltz, and Darrell Laham. 1998. An introduction to latent semantic analysis.
Discourse Processes, 25:259–284.

Percy Liang. 2005. Semi-supervised learning for natural language. Master’s thesis, Massachusetts Institute of
Technology.

Dekang Lin and Xiaoyun Wu. 2009. Phrase clustering for discriminative learning. In Proceedings of the Joint
Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Lan-
guage Processing of the AFNLP, pages 1030–1038, Suntec, Singapore, August. Association for Computational
Linguistics.

Kevin Lund, Curt Burgess, and Ruth A. Atchley. 1995. Semantic and associative priming in high-dimensional
semantic space. In Cognitive Science Proceedings, LEA, pages 660–665.

Mitchell P. Marcus, Beatrice Santorini, and Mary A. Marcinkiewicz. 1993. Building a Large Annotated Corpus of
English: The Penn Treebank. Computational Linguistics, 19(2):313–330.

Andriy Mnih and Geoffrey E. Hinton. 2009. A scalable hierarchical distributed language model. In Advances in
Neural Information Processing Systems, pages 1081–1088.

Frederic Morin and Yoshua Bengio. 2005. Hierarchical probabilistic neural network language model. In AIS-
TATS05, pages 246–252.

Lev Ratinov and Dan Roth. 2009. Design challenges and misconceptions in named entity recognition. In Pro-
ceedings of the Thirteenth Conference on Computational Natural Language Learning (CoNLL-2009), pages
147–155, Boulder, Colorado, June. Association for Computational Linguistics.

Adwait Ratnaparkhi, Jeff Reynar, and Salim Roukos. 1994. A maximum entropy model for prepositional phrase
attachment. In Proceedings of the workshop on Human Language Technology, HLT ’94, pages 250–255,
Stroudsburg, PA, USA. Association for Computational Linguistics.

Magnus Sahlgren. 2006. The Word-Space Model: Using distributional analysis to represent syntagmatic and
paradigmatic relations between words in high-dimensional vector spaces. Ph.D. thesis, Stockholm University.

Richard Socher, Eric H Huang, Jeffrey Pennington, Andrew Y Ng, and Christopher D Manning. 2011a. Dynamic
pooling and unfolding recursive autoencoders for paraphrase detection. In NIPS, volume 24, pages 801–809.

Richard Socher, Jeffrey Pennington, Eric H Huang, Andrew Y Ng, and Christopher D Manning. 2011b. Semi-
supervised recursive autoencoders for predicting sentiment distributions. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing, pages 151–161. Association for Computational Linguis-
tics.

Peter D. Turney and Patrick Pantel. 2010. From frequency to meaning: Vector space models of semantics. Journal
of Artificial Intelligence Research, 37(1):141–188, January.

Jaakko J. Väyrynen, Timo Honkela, and Lasse Lindqvist. 2007. Towards explicit semantic features using indepen-
dent component analysis. In Proceedings of the Workshop Semantic Content Acquisition and Representation
(SCAR), Stockholm, Sweden. Swedish Institute of Computer Science. SICS Technical Report T2007-06.

Kilian Q. Weinberger and Lawrence K. Saul. 2009. Distance metric learning for large margin nearest neighbor
classification. Journal of Machine Learning Research, 10:207–244, June.

Hai Zhao, Wenliang Chen, Chunyu Kity, and Guodong Zhou. 2009. Multilingual dependency learning: A huge
feature engineering method to semantic dependency parsing. In Proceedings of the Thirteenth Conference on
Computational Natural Language Learning (CoNLL 2009): Shared Task, pages 55–60, Boulder, Colorado,
June. Association for Computational Linguistics.

