

- Abstract —
• Goal: induce a WCFG from observed strings
(e.g. language modeling)
• Contribution: a spectral method for unsupervised
WCFG learning
• Ingredients:
• Convex optimization of a Hankel matrix for WCFG
• Linear contraints to characterize WCFG Hankel matrices
• Low-rank objective, derived from the spectral approach
- Weighted Context-Free Grammars —
• Definition: WCFG G =
$$\langle \Sigma, n, \alpha, , \{\beta_{\sigma}\}, A \rangle$$

• Alphabet Σ, n states (states = non-terminals)
• Initial vector $\alpha, \in \mathbb{R}^n$
• Terminal vectors $\beta_{\omega} \in \mathbb{R}^n$ for $\sigma \in \Sigma$
• Bilinear operator $A \in \mathbb{R}^{n\times n^2}$
• Grammar function $g_G: \Sigma^* \to \mathbb{R}$
 $g_G(\sigma) = \beta_{\sigma}$
 $\beta_G(\sigma) = \beta_{\sigma}$
 $\beta_G(\sigma) = \beta_{\sigma}$
 $\beta_G(\sigma) = \sum_{\substack{x_1, x_2 \in \Sigma^* \\ x_2 = x_{12}}} A(\beta_G(x_1) \otimes \beta_G(x_2))$
• Outside function $\alpha_G: \Sigma^* \times \Sigma^* \to \mathbb{R}^n$
 $\alpha_G(\langle \star \rangle)^T = \sum_{\substack{x_1 \in \Sigma^*, x_2 \in \Sigma^+ \\ x_2 = x_{12}^*}} \alpha_G(\langle x_1 \star z_2 \rangle)^T A(\beta_G(x_2) \otimes I_n)$
 $x_1 \in \Sigma^*, x_2 \in \Sigma^* \\ x_2 = x_{12}^*}$
- The Spectral Method —
1. Compute Hankel matrix H using training data
• Supervised: training data contains derivations, count events
• Unsupervised (this paper): induce H from plain strings
2. Compute the SVD of $H_{O^1, \mathbb{Z}^1} = UAV^T$
3. Create a rank-n factorization of $H_{O^1, \mathbb{Z}^1} \approx F_n B_n$
 $F_n = U_n A_n$ $B_n = V_n^1$
4. Compute G:
 $\alpha_n^T = H_{\pi, \mathbb{Z}^1} B_n^+$
 $\beta_{\sigma} = F_n^+ H_{O^1, \sigma}$
 $A = F^+ H_{O^1, \mathbb{Z}}(B_n \otimes B_n)^+$

Acknowledgements: This work was supported by a Google Research Award, and by projects XLike (FP7-288342), ERA-Net CHISTERA VISEN, TACARDI (TIN2012-38523-C02-02), BASMATI (TIN2011-27479-C04-03), SGR-GPLN (2009-SGR-1082) and SGR-LARCA (2009-SGR-1428). Xavier Carreras was supported by the Ramón y Cajal program of the Argentinian Government.

Unsupervised Spectral Learning of WCFG as Low-rank Matrix Completion

Raphaël Bailly[†] Xavier Carreras[†] Franco M. Luque[‡] Ariadna Quattoni[†] Universitat Politècnica de Catalunya

‡ Universidad Nacional de Córdoba y CONICET

Η	obs.	i/o ctr.	basis	size of H	obs.	i/o ctr.
59	34	162	$36 imes 34 ext{ }27,98 ext{}$	9 imes11,682	916	156,690
64	146	6,360	$42 imes37 extrm{ 3,63}$	88 imes 15,026	1,035	200,346
39	322	25,374	48 imes 41 $45,19$	2 imes 18,235	$1,\!157$	244,398
19	479	52,524	$54 imes45 ext{ 53,74}$	1 imes 21,196	1,281	284,466
58	657	89,718	60 imes 48 $60,84$	4 × 23,890	1,382	318,354
15	769	112.37				