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Abstract. Since their introduction, ranking SVM models [11] have become a
powerful tool for training content-based retrieval systems. All we need for train-
ing a model are retrieval examples in the form of triplet constraints, i.e. examples
specifying that relative to some query, a database itema should be ranked higher
than database itemb. These types of constraints could be obtained from feed-
back of users of the retrieval system. Most previous ranking models learn either a
global combination of elementary similarity functions or a combination defined
with respect to a single database item. Instead, we propose a “coarse to fine”
ranking model where given a query we first compute a distribution over“coarse”
classes and then use the linear combination that has been optimized for queries
of that class. These coarse classes are hidden and need to be inducedby the train-
ing algorithm. We propose a latent variable ranking model that induces both the
latent classes and the weights of the linear combination for each class fromrank-
ing triplets. Our experiments over two large image datasets and a text retrieval
dataset show the advantages of our model over learning a global combination as
well as a combination for each test point (i.e. transductive setting). Furthermore,
compared to the transductive approach our model has a clear computational ad-
vantages since it does not need to be retrained for each test query.

1 Introduction

In content-based retrieval the task is to retrieve items in adatabase that are most relevant
to a given query. What differentiates content-based retrieval from other retrieval scenar-
ios is that the query is itself an item. For example, in content-based image retrieval the
query would be an image. In this paper, we consider a retrieval framework where the
relevance scoring of items is computed using a pair-wise similarity or relevance func-
tion that measures how relevant a database item is for a givenquery. Since items can be
complex objects such as documents, images, or videos, defining a priori an appropiate
relevance function can be challenging, because the semantics of objects is unknown.
Therefore, there is an active line of reseach that pursues learning relevance functions
using some form of user supervision.

Since their introduction, ranking SVMs [11] have become a powerful tool for op-
timizing the similarity function of such content-based retrieval systems. All we need
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for training are examples in the form of triplet constraints. Each triplet specifies that a
database itema is more similar to a query than another database itemb. These types
of constraints could be obtained from feedback of users of the retrieval system. In the
standard ranking SVMs [18, 1, 9, 8, 5], one assumes that a set of elementary pair-wise
similarity functions is given and uses the triplets to learnan optimal weigthed combi-
nation of these functions. In this global ranking model the same weighted combination
is used for all queries independently of where they lie in thequery space.

However, when we search for the most relevant items for a query, the importance
of a particular feature or similarity function might vary depending on the type of query.
Consider for example a content-based image retrieval setting, if the query is an image
of a natural scene, color might be important but it might be less important for an in-
door scene. Local learning algorithms [4, 23, 9, 8, 20] attempt to address this problem
by adjusting the parameters of the model to the properties ofthe training set in differ-
ent areas of the input space. In the transductive setting, the simplest local algorithm
proceeds in two steps. First, for a given test sample we find a set of nearest neighbors
among the available training samples. And second, a model islearned using only these
neighbors as training data. The same local learning idea canbe applied to learn a simi-
larity function from ranking constraints. In this case, foreach test query we would learn
a local combination of elementary similarity functions using only ranking constraints
from the training queries in its vicinity. However, this approach has two potential limi-
tations. First, it is sensitive to the way in which vicinity is defined. Put it differently, the
local approach might fail if neighbors in the feature space used for representation do
not correlate with the ground-truth similarity. Second, retraining a model for each test
query might be prohibitive for certatin applications that demand fast retrieval. Another
approach to learn local models is to train a linear combination of elementary similarities
for each item in the database [9, 8]. One of the limitations ofmodeling the problem in
this way is that the number of parameters grows linearly withthe number of database
items, making generalization challenging.

In this paper we propose a differentcoarse to finestrategy, aimed at addressing
the limitations of previous methods while still taking advantage of local learning. The
idea is, given a query, to first compute a distribution overcoarseclasses and then use
a weighted combination that has been optimized for the queries of that class. A main
challenge in this strategy is that coarse classes are hiddenand need to be induced by
the learning algorithm. We propose a latent variable ranking model that learns both the
hidden classes and the weights of the linear combination foreach class, using ranking
triplets. Our contribution is a new latent variable rankingmodel for inducing similarity
functions, which also learns thevicinity function that minimizes the global ranking loss.
Learning a function that maps queries to latent classes implies that at test time we only
need to evaluate the latent function and compute the corresponding similarity, without
any training required. We performed experiments over two large image datasets and a
large textual dataset and show that our model outperforms state-of-the-art approaches
for the task. In our experiments only a few latent classes were sufficient to see some of
the benefits of local learning. Some of these classes seem to correspond to thenatural
coarse variability of the dataset (e.g. indoor vs. outdoor scenes in image collections).



2 Related Work

In this section we review the most relavant related work on learning from ranking con-
straints as well as relevant work on local learning.

One approach to inducing ranking functions from triplet constraint consists of learn-
ing a bilinear similarity measure of the form:s(xq, xr) = x⊤

q Zxr. Chechiket al. [5]
presented an online dual algorithm to find an optimalZ using ranking constraints. The
loss function used in [5] is a generalization of the hinge loss for the ranking setting,
which is the same loss function used in this paper. Finally, Lanckrietet al. [13] pro-
posed a method to learn a global linear combination of predefined kernel functions.

Ranking constraints are also used in the context of semi-supervised clustering. In
this setting the goal is to leverage the constraints to improve the quality of the parti-
tion generated by the clustering algorithm [21, 2, 12, 3]. Hertz et al. [10] developed a
similarity learning method based on boosting that used a semi-supervised constrained
ranking algorithm to train the gaussian mixture weak learners.

Local learning algorithms have had a long history in machinelearning. Bottou and
Vapnik [4] provided both an empirical and theorethical study of a transductive classifi-
cation algorithm based on training a neural network for eachtest sample using only
training samples from its vicinity. His empirical results showed that local learning
could greatly improve the performance of an optical character recognizer. More re-
cently, Zhanget al. [23] proposed a local model for object recognition where a support
vector machine is trained for each test sample using only nearest neigboor training
samples. For pose estimation, Urtasun and Darrell [20] proposed a local learning algo-
rithm where a mixture of gaussian processes is learnt for each test image using train-
ing examples in its vicinity. Fromeet al. [9, 8] proposed an alternative local similarity
learning algorithm where the similarity between a focal database imagexf and a query
imagexq is assumed to be a linear combination of elementary similarity functions:
D(xq, xf ) =

∑

l wf,ldl(xf , xq). The algorithm learns the set of weightswf,l for each
focal image by minimizing a hinge loss over the ranking constraints. The main differ-
ence between our approach and previous local learning methods for learning similarity
functions is that while previous approaches implicitly induced a partition of the data
into local neighborhoods, we learn explicitly the softvicinity function that minimizes
a global ranking loss. In other words, the function that assigns latent classes to queries
can be regarded as inducing a soft partition over the data points. This approach has the
advantage that we can directly control the number of partitions and parameters, as op-
posed to having a set of parameters for each database item. Moreover our approach does
not require to retrain the model at test time, as opposed to the transductive approach.

Yan and Hauptmann [22] proposed a probabilistic latent-variable model for query
retrieval. As in our case, their model employs a mixture model for the query space,
but in their case the combination of elementary rankers is modeled using a regression
function. For learning, they optimize a likelihood function. The main difference with
our work is that we use a max-margin approach to ranking with latent query classes,
and optimize a pairwise ranking loss function. Our formulation results in a simple and
efficient subgradient algorithm for parameter estimation.



3 Ranking Models

We assume a set of training queries indexed byQ, where each indexq ∈ Q is associated
with a queryxq ∈ X . Similarly we assume a database indexed byR, where each index
r ∈ R is associated with a database itemxr ∈ X ′. The representation of database items
needs not to be the same as that of the queries. Instead, our method requires a set ofm
elementary similarity functions that take a query and a database item and compute a
score. Thus, we assume vectorskq,r ∈ R

m where every componentkjq,r indicates the
score of thej-th similarity function between queryq and database itemr.

Given a query, our goal is to rank the database items with respect to their similary
to the query. Consider a simple similarity function that consists of a linear combination
of elementary similarity functions,sim(q, r) = z

⊤
kq,r, wherez ∈ R

m are the weights
of the function. In this paper we only consider positive similarity combinations and
thereforezj ≥ 0 for all j.

Given supervised training data, the weightsz of the linear combination could be
optimized using an appropriate objective function. For example, assume we have a set
C of training constraints. Each element ofC is a triple of the form〈q, a, b〉, indicating
that a queryq ∈ Q is more similar to itema ∈ R than to itemb ∈ R. We can define
the loss of asim function on a training setC as a natural extension of the classification
hinge loss for ranking:

L(C) =
∑

〈q,a,b〉∈C

max{ 0 , sim(q, b)− sim(q, a) + 1 } (1)

Thus when the similarity function satisfies a ranking constraint with margin 1 we pay no
loss for that constraint; otherwise we pay a loss proportional to how much the ranking
constraint is violated. Using this loss function we could set the weightsz to minimize
the following regularized objective:L(C) + λ

2
‖z‖2, whereλ is the regularization pa-

rameter. This corresponds to a ranking SVM [11]. One simple strategy to minimize this
objective is to use a primal sub-gradient method [19], whichis the approach we use in
this paper.

3.1 Ranking Models with Latent Variables

In the approach described above the same linear combinationof elementary similarity
functions is used for all queries. However, the importance given to each similarity func-
tion in the combination might vary depending on the query. Inour ranking model we
will address this by introducing latent classes. The idea behind this approach is to first
assign a query to a class and then use a similarity function that specializes on ranking
queries for that class.

Consider that for a given queryq there is a distribution overG latent classes:p(hq=
g | q), wherehq=g indicates thatg is the latent class of queryq. We can then define the
similarity function:

sim(q, r) =
G
∑

g=1

p(hq=g | q) z⊤g kq,r , (2)



where the distribution over latent classes is given by a log-linear model,

p(hq=g | q) =
expw

⊤

g xq

∑G

g′=1
exp

w
⊤

g′
xq

. (3)

With these definitions our similarity function is fully determined by two parame-
ter matrices:Z = [z1, z2, . . . , zG], where each columnzg defines the combination of
elementary similarities for latent classg; andW = [w1,w2, . . . ,wG] that defines the
conditional distribution of latent classes given a query, using a parameter vectorwg for
each class. To learn the parameters of this function, we can optimize the objective

L(C) +
λw

2
‖W‖2 +

λz

2
‖Z‖2 , (4)

whereλw andλz control the regularization of the two sets of parameters.

3.2 Training the parameters

In this section we describe how to estimate the model parametersW andZ that min-
imize the objective function of Eq. (4). We use an alternating optimization strategy,
which consists of a series of iterations that optimize one set of parameters given fixed
values for the others. We start with some initial distribution of latent classes for each
training query. Then we iterate between fixingW and minimizing the objective with
respect toZ, and fixingZ and optimizing with respect toW . We use a gradient-based
method for each optimization step. Since our objective is non-differentiable because of
the hinge loss, we use a sub-gradient of the objective, whichwe compute as follows.
Given parameter values, let∆ be the set of ranking constraints inC that attain non-zero
loss,

∆ = { 〈q, a, b〉 ∈ C | sim(q, a)− sim(q, b) < 1 } . (5)

Notice that

sim(q, b)− sim(q, a) =
G
∑

g=1

p(hq=g | q) z⊤g (kq,b − kq,a) . (6)

The subgradient of the loss function with respect to parameterZg,j is

∂L

∂Zg,j

=
∑

〈q,a,b〉∈∆

p(hq=g | q)(kjq,b − kjq,a) , (7)

where the sum is over all constraints that have non-zero lossunder the current parameter
settings. In the expression, the contribution of thej-th elementary similarity function
to parameterZg,j is weighted by the probability that queries attaining some loss are
in classg. Thus, the updates to parameters of classg will be dominated by queries
belonging to the class.

When parametersZ are fixed, it is useful to define the following quantities,

ǫq,g =
∑

a,b s.t. 〈q,a,b〉∈∆

z
⊤
g (kq,b − kq,a) . (8)



Intuitively, ǫq,g is the contribution to the loss made by classg on the constraints of query
q. More negative values indicate better ranking performancefor that query under class
g. Clearly, under fixedZ the valuesǫ are constant. The subgradient of the loss function
with respect toWg,j is

∂L

∂Wg,j

=
∑

q∈Q

ǫq,g
[

p(hq=g | q)− p(hq=g | q)2
]

xj
q . (9)

For negative values ofǫq,g the update will increase the probability that queryq belongs
to classg, and viceversa. Thus the algorithm will assign queries to latent classes that
perform well on that query.

4 Experiments

In this section we present experiments on learning ranking functions using image and
textual datasets. The main goal of the experiments is to showthat adding latent variables
to a state-of-the-art ranking SVM [11] results in clear improvements in three different
datasets. In addition we also compare our method to an SVM trained locally for each
test query (e.g., [23] used this approach for a classification task), which is a simple but
expensive approach to specialize the ranking function to a query.

Obtaining ground truth for training and testing retrieval algorithms is a challenging
task. In the absence of feedback from real users of a retrieval system, alternative ap-
proaches have been proposed to obtain ground truth similarity data (e.g., [5]). In this
paper we use semantic annotations available in the datasetsto generate ground truth
similarities, as will be described next. These similarities are then used to automatically
generate training constraints. Ideally, however, the constraints used for learning would
be generated from user interactions with a retrieval system.

4.1 Datasets and Ground-Truth Similarities

The SUN dataset [6] contains 12,000 annotated images covering a large range of in-
door and outdoors scenes. More than 200 object categories have been manually anno-
tated using LabelMe [17] by a single annotator and verified for consistency. In total
the dataset contains 152,000 annotated object instances. Images in this dataset were
grouped into five random partitions: 2,000 images were used as training queries, 1,000
as validation queries, 2,000 as test queries, 6,000 as database images, and finally 1,000
images were reserved as novel-database images. To generateground-truth similarities
for training and testing with this dataset we derived a similarity score from the manual
annotations. More precisely, for every image we computed a spatial histogram of object
ocurrences using the ground-truth segmentations and corresponding object tags. From
this we generated a pairwise similarity matrixS, whereSq,r is the intersection between
the histogram of queryq and the histogram of database imager. Figure 3 shows exam-
ples of the top ground-truth neighbors obtained by this process. The similarity function
is not perfect but seems to be a reasonable aproximation to the true semantic similarity
between scenes.



TheREUTERS-IMGdataset [16] consists of 25,538 images collected from the Reu-
ters News website. Each image in this database is associatedwith a caption, which we
used to compute image similarities. This dataset contains images from a wide set of
topics such as sports, entertainment and politics. We randomly selected 17,000 images
used as the database; and three disjoint sets of 500 images used as train, validation
and test queries. Theground truth similaritiesfor each query image were generated
using the image captions. For each image, we considered onlythe content words of the
caption (i.e., we disregard stop words). Then, the similarity between an image query
and a database image was set to the number of common content words in their captions.

TheRCV1dataset [14] is a publicy available benchmark collection oftextual doc-
uments, where documents are categorized by topics according to a topic hierarchy. We
randomly selected 25,000 documents as the database, and three disjoint sets of 1,000
documents used as train, validation and test queries. To computeground truth similari-
tiesbetween two documents we looked at the intersection of the sets of topics assigned
to each of the documents; specifically, we counted the numberof unique topic nodes
that are assigned to both documents.

For all datasets, we create the ranking constraints for training as follows. For each
training query:

1. Find its topk nearest neighbors among the database items using the ground-truth
similarity scores.

2. For each neighbor samplel items at random from the remaining database items.
3. Generate the correspondingk ∗ l ranking triplets.

A total of q ∗ k ∗ l ranking constraints were generated by this process. In all of our
experiments,k to 40 andl to 4 resulting in a total of 320,000 training ranking triplets
for the SUN database and 80,000 training triplets for the REUTERS-IMG database, and
160,000 training triplets for the RCV1 dataset.

As image representation we used spatial hog histograms [7],a standard represen-
tation widely used for image classification and object detection. To represent texts, we
used the standard bag-of-words representation that comes with the data, where each
term is weighted by IDF. In the ranking models, the elementary similarity functions
are computed using these base features, in particular we take each featurexj and set
kjq,r = exp−|xqj−xrj |.

4.2 Comparison of Models

We evaluate the ranking performance of three models:

– Global SVM: A single weighted combination of elementary similarities is learned
using all constraints. This corresponds to the standard ranking SVM [11]

– Transductive SVM: A weighted combination of elementary similarities is learned
for each test query using only the ranking constraints from its k nearest training
queries.3 For comparison with other models we report results for the best perform-
ing k.

3 We only tried this model on the image datasets. Running this model requires access at test time
to a function that retrieves thek nearest training queries for a given test query. We used the
histogram intersection between hog features as the similarity score.
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Fig. 1.Precision-recall curves of the three databases using the three different models. On the SUN
database, we show retrival curves on the “known database” and the “novel database” settings. For
the other datasets we only present the “known database” setting.

– Mixture: A mixture ranking model. For comparison with othermodels we report
results for the optimal number of hidden classes, which was chosen using the vali-
dation set.

We used a primal projected sub-gradient algorithm [19], andtuned the regulariza-
tion constants on the validation data. The mixture model took typically less than10
global iterations to converge. To measure ranking performance we report precision-
recall curves for the task of retrieving the 100 top neighbors in the database for a num-
ber of test queries. For the SUN data we also evaluate the ranking models in a “novel
database” setting, where the database of images is different from that of training.



4.3 Results

Figure 1 shows performance of the different ranking models on the three datasets.4 The
mixture model outperforms the global and transductive models in all cases.5 To give a
concrete example, in the known-database setting for the SUNdata, for a recall of20%
the global and transductive models obtain around7% precision versus9% precision
of the mixture model. This means that to obtain20 of the top 100 neighbors, on aver-
age 286 images of the 6,000 database images need to be browsedwith the global and
transductive models. In contrast, for the mixture model 220images must be browsed on
average. This constitutes a25% error reduction. To illustrate the behavior of the mixture
model, Figure 3 shows some example test queries with their corresponding ground-truth
neighbors, together with neighbors predicted by the mixture ranking model.

Figure 2 illustrates the behavior of the methods on validation data for SUN. The
left plot shows the average ranking given to the top 100 true neighbors as a function of
the number of neighbors used to train the transductive model. For example, an average
ranking performance ofp% means that on average a true neighbor is ranked among the
topp% of the database. The best performance is obtained using around 128 neighbors.
The right plot shows average ranking as a function of the number of hidden classes used
by the mixture model. We observe the largest improvement when the number of hidden
classes is incresed from two to four, and after that we observe smaller improvements.
In fact, it seems that four is the “intrinsic dimensionality” discovered by the mixture
model because even the models with more latent classes put more than90% of their
probability mass on the top four classes. By probability mass of each class we mean:
mass(g) =

∑

q∈Q
1

|Q|p(hq = g | q).
Figure 4 illustrates, for some latent classes, the top 10 images with highest proba-

bility for that class (we omit latent classes with probability mass lower than 0.0001),
for the SUN database, where we used the model with optimal number of hidden classes
(8). The numbers below each column correspond to the probability mass assigned to
that class by the model. The model seems to have learned one latent class for indoor
scenes and 4 latent classes for outdoor scenes.

5 Conclusion

Since their introduction, ranking SVM models [11] have become a powerful tool for
training retrieval systems. All we need for training a modelare retrieval examples in
the form of triplet constraints. When we try to apply these approaches to textual and
image databases, an important challenge is the heterogeneous nature of the data space.

4 Note that the known-database and novel-database precision-recall performances are not di-
rectly comparable with each other. This is because the tasks are different. In the SUN data the
known-database task is to rank6, 000 database images while the novel-database task is to rank
1, 000 images. What is important is that the relative performance of the different models is
maintained across the two settings.

5 We conducted significance tests, similar to [15], which in essence consistof a sign test for the
task of ranking a pair of random images with respect to its similarity to a random query. We
found all differences between the mixture and other models to be significant with p < 0.001.
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Fig. 2. Validation results on SUN. Left: average ranking of the transductive model as a function
of the number of nearest neighbors used to train the local models. Right:average ranking of the
mixture model, as a function of the number of latent classes.

To address this problem, previous work has explored local approaches where one trains
different retrieval functions for each neigborhood in the data space. The problem of this
approach is that neigborhoods need to be defined a priori, andtherefore the resulting
model is susceptible to the quality of these neighborhoods.

The main contribution of this paper is to show that a neighborhood function can be
learned jointly with a ranking function that is a mixture of specialized ranking func-
tions. We regard the assignment of queries to neighborhoodsas a latent variable prob-
lem, resulting in a latent variable ranking model which is novel to our knowledge. Al-
though the optimization problem to train this type of modelsis not convex, we derive
an efficient alternating method that works very well in practice. Experiments over three
datasets show that the mixture model outperforms both a standard SVM ranker and and
transductive-style approach.
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