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Abstract. Since their introduction, ranking SVM models [11] have become a
powerful tool for training content-based retrieval systems. All wedrfeetrain-

ing a model are retrieval examples in the form of triplet constraints,Xameles
specifying that relative to some query, a database itestmould be ranked higher
than database itetn These types of constraints could be obtained from feed-
back of users of the retrieval system. Most previous ranking modsls &ther a
global combination of elementary similarity functions or a combination define
with respect to a single database item. Instead, we propose a “coarse™o fi
ranking model where given a query we first compute a distribution ‘@ezrse”
classes and then use the linear combination that has been optimized fiesque
of that class. These coarse classes are hidden and need to be ingticedrain-

ing algorithm. We propose a latent variable ranking model that indudisthe
latent classes and the weights of the linear combination for each classanim

ing triplets. Our experiments over two large image datasets and a text aétriev
dataset show the advantages of our model over learning a globalrtioh as
well as a combination for each test point (i.e. transductive setting)h&umore,
compared to the transductive approach our model has a clear cdiopatad-
vantages since it does not need to be retrained for each test query.

1 Introduction

In content-based retrieval the task is to retrieve itemgdatabase that are most relevant
to a given query. What differentiates content-based rettiewm other retrieval scenar-
ios is that the query is itself an item. For example, in contesed image retrieval the
query would be an image. In this paper, we consider a retrfesaework where the
relevance scoring of items is computed using a pair-wisdaiity or relevance func-
tion that measures how relevant a database item is for a givery. Since items can be
complex objects such as documents, images, or videos, mpfnpriori an appropiate
relevance function can be challenging, because the sarsasftiobjects is unknown.
Therefore, there is an active line of reseach that pursueniley relevance functions
using some form of user supervision.

Since their introduction, ranking SVMs [11] have become wgxdul tool for op-
timizing the similarity function of such content-basedrimtal systems. All we need
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for training are examples in the form of triplet constrairifach triplet specifies that a
database item is more similar to a query than another database iieithese types

of constraints could be obtained from feedback of usersefdirieval system. In the
standard ranking SVMs [18, 1,9, 8, 5], one assumes that & sé¢mentary pair-wise

similarity functions is given and uses the triplets to leamoptimal weigthed combi-

nation of these functions. In this global ranking model thme weighted combination
is used for all queries independently of where they lie inghery space.

However, when we search for the most relevant items for aygtiee importance
of a particular feature or similarity function might varypminding on the type of query.
Consider for example a content-based image retrievahgeifithe query is an image
of a natural scene, color might be important but it might tses lenportant for an in-
door scene. Local learning algorithms [4, 23,9, 8, 20] aptetn address this problem
by adjusting the parameters of the model to the properti¢iseotraining set in differ-
ent areas of the input space. In the transductive settimgsithplest local algorithm
proceeds in two steps. First, for a given test sample we firet afsearest neighbors
among the available training samples. And second, a motediised using only these
neighbors as training data. The same local learning idedeapplied to learn a simi-
larity function from ranking constraints. In this case, éach test query we would learn
a local combination of elementary similarity functionsngsionly ranking constraints
from the training queries in its vicinity. However, this appch has two potential limi-
tations. First, it is sensitive to the way in which vicinitydefined. Put it differently, the
local approach might fail if neighbors in the feature spasedufor representation do
not correlate with the ground-truth similarity. Secondraming a model for each test
query might be prohibitive for certatin applications thahthnd fast retrieval. Another
approach to learn local models is to train a linear combametif elementary similarities
for each item in the database [9, 8]. One of the limitationmofieling the problem in
this way is that the number of parameters grows linearly withnumber of database
items, making generalization challenging.

In this paper we propose a differecbarse to finestrategy, aimed at addressing
the limitations of previous methods while still taking adtege of local learning. The
idea is, given a query, to first compute a distribution cxearseclasses and then use
a weighted combination that has been optimized for the gaaf that class. A main
challenge in this strategy is that coarse classes are hadgmeed to be induced by
the learning algorithm. We propose a latent variable ragpkiodel that learns both the
hidden classes and the weights of the linear combinatiopdoh class, using ranking
triplets. Our contribution is a new latent variable rankingdel for inducing similarity
functions, which also learns tiwvicinity function that minimizes the global ranking loss.
Learning a function that maps queries to latent classedesifiiat at test time we only
need to evaluate the latent function and compute the camelspg similarity, without
any training required. We performed experiments over twgdamage datasets and a
large textual dataset and show that our model outperforais-sf-the-art approaches
for the task. In our experiments only a few latent classe®wefficient to see some of
the benefits of local learning. Some of these classes seearrespond to theatural
coarse variability of the dataset (e.g. indoor vs. outdeenss in image collections).



2 Related Work

In this section we review the most relavant related work anring from ranking con-
straints as well as relevant work on local learning.

One approach to inducing ranking functions from tripletstoaint consists of learn-
ing a bilinear similarity measure of the form(z,, z,) = x;'—Za:T. Chechiket al. [5]
presented an online dual algorithm to find an optifalsing ranking constraints. The
loss function used in [5] is a generalization of the hinges [ty the ranking setting,
which is the same loss function used in this paper. Finalndkrietet al. [13] pro-
posed a method to learn a global linear combination of preddfkernel functions.

Ranking constraints are also used in the context of semérsiged clustering. In
this setting the goal is to leverage the constraints to imgptbe quality of the parti-
tion generated by the clustering algorithm [21, 2, 12, 3]rtilet al. [10] developed a
similarity learning method based on boosting that used a-sapervised constrained
ranking algorithm to train the gaussian mixture weak leggne

Local learning algorithms have had a long history in machéaening. Bottou and
Vapnik [4] provided both an empirical and theorethical stofla transductive classifi-
cation algorithm based on training a neural network for etesh sample using only
training samples from its vicinity. His empirical resulteosved that local learning
could greatly improve the performance of an optical chamactcognizer. More re-
cently, Zhanget al.[23] proposed a local model for object recognition where @psut
vector machine is trained for each test sample using onlyeseaeigboor training
samples. For pose estimation, Urtasun and Darrell [20]gseg a local learning algo-
rithm where a mixture of gaussian processes is learnt fdn &8t image using train-
ing examples in its vicinity. Fromet al. [9, 8] proposed an alternative local similarity
learning algorithm where the similarity between a focabthase image » and a query
imagex, is assumed to be a linear combination of elementary sirtyildwinctions:
D(xq,xf) =3, wyidi(xy, z4). The algorithm learns the set of weighig; for each
focal image by minimizing a hinge loss over the ranking crists. The main differ-
ence between our approach and previous local learning mefioo learning similarity
functions is that while previous approaches implicitly icdd a partition of the data
into local neighborhoods, we learn explicitly the seitinity function that minimizes
a global ranking loss. In other words, the function thatg@ssiatent classes to queries
can be regarded as inducing a soft partition over the datagdihis approach has the
advantage that we can directly control the number of pantitiand parameters, as op-
posed to having a set of parameters for each database itemaobw our approach does
not require to retrain the model at test time, as opposecetrémsductive approach.

Yan and Hauptmann [22] proposed a probabilistic latenialzde model for query
retrieval. As in our case, their model employs a mixture nhddiethe query space,
but in their case the combination of elementary rankers ideteal using a regression
function. For learning, they optimize a likelihood functiorhe main difference with
our work is that we use a max-margin approach to ranking veitérit query classes,
and optimize a pairwise ranking loss function. Our formolatesults in a simple and
efficient subgradient algorithm for parameter estimation.



3 Ranking Models

We assume a set of training queries indexe@phwhere each index € Q is associated
with a queryx, € X'. Similarly we assume a database indexed®where each index

r € R is associated with a database iteme X”’. The representation of database items
needs not to be the same as that of the queries. Instead, thwdwequires a set af
elementary similarity functions that take a query and alzkga item and compute a
score. Thus, we assume vecttirs, € R™ where every componelkg",, indicates the
score of thej-th similarity function between queryand database item

Given a query, our goal is to rank the database items withetgp their similary
to the query. Consider a simple similarity function thatsists of a linear combination
of elementary similarity functionsim(g, r) = z "k, ., wherez € R™ are the weights
of the function. In this paper we only consider positive $amfy combinations and
thereforez? > 0 for all ;.

Given supervised training data, the weightsf the linear combination could be
optimized using an appropriate objective function. Fomeple, assume we have a set
C of training constraints. Each element®fs a triple of the form{q, a, b), indicating
that a queryy € Q is more similar to itenu € R than to itemb € R. We can define
the loss of a&im function on a training sef as a natural extension of the classification
hinge loss for ranking:

L(C) = Z max{ 0, sim(q, b) — sim(q,a) +1} (1)
(g,a,b)eC

Thus when the similarity function satisfies a ranking caaiatrwith margin 1 we pay no
loss for that constraint; otherwise we pay a loss propoatitm how much the ranking
constraint is violated. Using this loss function we coultitte weightsz to minimize
the following regularized objectivé:(C) + 3|z||?, where) is the regularization pa-
rameter. This corresponds to a ranking SVM [11]. One simipégegy to minimize this
objective is to use a primal sub-gradient method [19], wlscthe approach we use in
this paper.

3.1 Ranking Models with Latent Variables

In the approach described above the same linear combinattielementary similarity
functions is used for all queries. However, the importarigergto each similarity func-
tion in the combination might vary depending on the queryouin ranking model we
will address this by introducing latent classes. The iddartakthis approach is to first
assign a query to a class and then use a similarity functiainsghecializes on ranking
queries for that class.

Consider that for a given quegythere is a distribution ove¥ latent classegi(h, =
g1 q), whereh, =g indicates thay is the latent class of query We can then define the
similarity function:

G
sim(q, ) = Zp(hq =glq) Z;;rkq,'r ) 2

g=1



where the distribution over latent classes is given by dilogar model,

w;xq
p(hg=glq) = % : ®3)
g'=16xXp o

With these definitions our similarity function is fully demeined by two parame-
ter matricesZ = [z1, 2, ..., 2z¢), Where each column, defines the combination of
elementary similarities for latent clagsandW = [wq, wa, ..., w¢]| that defines the
conditional distribution of latent classes given a quesjng a parameter vecter, for
each class. To learn the parameters of this function, we pamize the objective
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where),, and\, control the regularization of the two sets of parameters.

3.2 Training the parameters

In this section we describe how to estimate the model paemsiBt and Z that min-
imize the objective function of Eq. (4). We use an alterrgutiiptimization strategy,
which consists of a series of iterations that optimize onetparameters given fixed
values for the others. We start with some initial distribatof latent classes for each
training query. Then we iterate between fixig and minimizing the objective with
respect taZ, and fixingZ and optimizing with respect td’. We use a gradient-based
method for each optimization step. Since our objective isdifferentiable because of
the hinge loss, we use a sub-gradient of the objective, wivieltompute as follows.
Given parameter values, l€t be the set of ranking constraintsdrthat attain non-zero
loss,

A={{q,a,b) €C|sim(q,a) —sim(q,b) <1} . (5)
Notice that
G
sim(q,b) — sim(q,a) = > _plhg=g|q) 2] (Kgp —Kga) - (6)
g=1

The subgradient of the loss function with respect to parani€} ; is

L . )
97 Z p(hq=g| Q)(k;b - k(]],a) ) (7)
9:J (g,a,b)eA

where the sum is over all constraints that have non-zerallodar the current parameter
settings. In the expression, the contribution of jkeh elementary similarity function
to parametelZ, ; is weighted by the probability that queries attaining soosslare
in classg. Thus, the updates to parameters of classill be dominated by queries
belonging to the class.

When parameterg are fixed, it is useful to define the following quantities,

€q,9 = Z Z;(kq,b —kga) - (8)

a,b s.t. {(q,a,b)eA



Intuitively, ¢, 4 is the contribution to the loss made by clgsn the constraints of query
g. More negative values indicate better ranking performdacthat query under class
g. Clearly, under fixedZ the values are constant. The subgradient of the loss function
with respect tdV, ; is

oL

aw,, Y cag [Plha=9la) —p(hg=g|0)*] =} . (9)

qeQ

For negative values @f, , the update will increase the probability that quetyelongs
to classg, and viceversa. Thus the algorithm will assign queries tenlaclasses that
perform well on that query.

4 Experiments

In this section we present experiments on learning rankimgtfons using image and
textual datasets. The main goal of the experiments is to ghavadding latent variables
to a state-of-the-art ranking SVM [11] results in clear imygments in three different
datasets. In addition we also compare our method to an SVilkettdocally for each
test query (e.g., [23] used this approach for a classifioatisk), which is a simple but
expensive approach to specialize the ranking function toesyq

Obtaining ground truth for training and testing retrievigiaithms is a challenging
task. In the absence of feedback from real users of a reltréggéem, alternative ap-
proaches have been proposed to obtain ground truth sityitdatia (e.g., [5]). In this
paper we use semantic annotations available in the datmsgenerate ground truth
similarities, as will be described next. These similasiti&e then used to automatically
generate training constraints. Ideally, however, the taitds used for learning would
be generated from user interactions with a retrieval system

4.1 Datasets and Ground-Truth Similarities

The SUN dataset [6] contains 12,000 annotated images coveringya fange of in-
door and outdoors scenes. More than 200 object categoresbe@n manually anno-
tated using LabelMe [17] by a single annotator and verifiedcfinsistency. In total
the dataset contains 152,000 annotated object instanmoagek in this dataset were
grouped into five random partitions: 2,000 images were usdthaing queries, 1,000
as validation queries, 2,000 as test queries, 6,000 asatsaimages, and finally 1,000
images were reserved as novel-database images. To gegeraibel-truth similarities
for training and testing with this dataset we derived a @intiy score from the manual
annotations. More precisely, for every image we computgahtia histogram of object
ocurrences using the ground-truth segmentations andspanmneling object tags. From
this we generated a pairwise similarity matBixwheresS, , is the intersection between
the histogram of query and the histogram of database imag€&igure 3 shows exam-
ples of the top ground-truth neighbors obtained by this @ecThe similarity function
is not perfect but seems to be a reasonable aproximatior tioute semantic similarity
between scenes.



TheREUTERS-IMGlataset [16] consists of 25,538 images collected from the Re
ters News website. Each image in this database is assoeidted caption, which we
used to compute image similarities. This dataset contairagés from a wide set of
topics such as sports, entertainment and politics. We ratydselected 17,000 images
used as the database; and three disjoint sets of 500 imagdsaggrain, validation
and test queries. Thground truth similaritiesfor each query image were generated
using the image captions. For each image, we consideredtmnlyontent words of the
caption (i.e., we disregard stop words). Then, the sintydretween an image query
and a database image was set to the number of common contelstiwoheir captions.

The RCV1dataset [14] is a publicy available benchmark collectioteafual doc-
uments, where documents are categorized by topics acgamtopic hierarchy. We
randomly selected 25,000 documents as the database, aeddikjoint sets of 1,000
documents used as train, validation and test queries. Tpetaground truth similari-
tiesbetween two documents we looked at the intersection of ttseoeopics assigned
to each of the documents; specifically, we counted the numbenique topic nodes
that are assigned to both documents.

For all datasets, we create the ranking constraints fanitrgias follows. For each
training query:

1. Find its topk nearest neighbors among the database items using the gtrotimd
similarity scores.

2. For each neighbor samglé&ems at random from the remaining database items.

3. Generate the correspondihg [ ranking triplets.

A total of ¢ % k x [ ranking constraints were generated by this process. Irf allio
experimentsk to 40 and! to 4 resulting in a total of 320,000 training ranking triglet
for the SUN database and 80,000 training triplets for the RERS-IMG database, and
160,000 training triplets for the RCV1 dataset.

As image representation we used spatial hog histograms [Stendard represen-
tation widely used for image classification and object détac To represent texts, we
used the standard bag-of-words representation that contlegshe data, where each
term is weighted by IDF. In the ranking models, the elemgnsamilarity functions
are computed using these base features, in particular veeetdh feature; and set
ki, = exp[Xai =%l

4.2 Comparison of Models
We evaluate the ranking performance of three models:

— Global SVM: A single weighted combination of elementary itmities is learned
using all constraints. This corresponds to the standakdngrsVM [11]

— Transductive SVM: A weighted combination of elementaryikinties is learned
for each test query using only the ranking constraints frtaw: inearest training
queries2 For comparison with other models we report results for trs perform-
ing k.

3 We only tried this model on the image datasets. Running this model requiressat test time

to a function that retrieves thie nearest training queries for a given test query. We used the
histogram intersection between hog features as the similarity score.
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Fig. 1. Precision-recall curves of the three databases using the threenlifieoeels. On the SUN
database, we show retrival curves on the “known database” andadhel‘database” settings. For
the other datasets we only present the “known database” setting.

— Mixture: A mixture ranking model. For comparison with othrapdels we report

results for the optimal number of hidden classes, which kasen using the vali-
dation set.

We used a primal projected sub-gradient algorithm [19], med the regulariza-
tion constants on the validation data. The mixture modek tiypically less thanl0
global iterations to converge. To measure ranking perfogeave report precision-
recall curves for the task of retrieving the 100 top neigBhinrthe database for a num-
ber of test queries. For the SUN data we also evaluate théngankodels in a “novel
database” setting, where the database of images is diffiecen that of training.



4.3 Results

Figure 1 shows performance of the different ranking modelthe three datasetsThe
mixture model outperforms the global and transductive rsoieall cases® To give a
concrete example, in the known-database setting for the &i&| for a recall 020%
the global and transductive models obtain aroGfid precision versu9% precision
of the mixture model. This means that to obtaihof the top 100 neighbors, on aver-
age 286 images of the 6,000 database images need to be brewisele global and
transductive models. In contrast, for the mixture modeli228yes must be browsed on
average. This constitute2a% error reduction. To illustrate the behavior of the mixture
model, Figure 3 shows some example test queries with theegmonding ground-truth
neighbors, together with neighbors predicted by the mixtanking model.

Figure 2 illustrates the behavior of the methods on valitatiata for SUN. The
left plot shows the average ranking given to the top 100 teighbors as a function of
the number of neighbors used to train the transductive méoelexample, an average
ranking performance g% means that on average a true neighbor is ranked among the
top p% of the database. The best performance is obtained using&d®8 neighbors.
The right plot shows average ranking as a function of the rerrabhidden classes used
by the mixture model. We observe the largest improvementwttve number of hidden
classes is incresed from two to four, and after that we olesemaller improvements.
In fact, it seems that four is the “intrinsic dimensionaliliscovered by the mixture
model because even the models with more latent classes petthen90% of their
probability mass on the top four classes. By probability snafseach class we mean:
mass(g9) = 2 yeq oP(hg = 91)-

Figure 4 illustrates, for some latent classes, the top 1@&savith highest proba-
bility for that class (we omit latent classes with probdbpilnass lower than 0.0001),
for the SUN database, where we used the model with optimabeuf hidden classes
(8). The numbers below each column correspond to the prlityainiass assigned to
that class by the model. The model seems to have learned mm tdass for indoor
scenes and 4 latent classes for outdoor scenes.

5 Conclusion

Since their introduction, ranking SVM models [11] have hmeoa powerful tool for

training retrieval systems. All we need for training a moded retrieval examples in
the form of triplet constraints. When we try to apply theserapphes to textual and
image databases, an important challenge is the heteragenature of the data space.

* Note that the known-database and novel-database precision-redatimences are not di-
rectly comparable with each other. This is because the tasks are differéme SUN data the
known-database task is to ra6k000 database images while the novel-database task is to rank
1,000 images. What is important is that the relative performance of the differ@dels is
maintained across the two settings.

5 We conducted significance tests, similar to [15], which in essence cofsisign test for the
task of ranking a pair of random images with respect to its similarity to a rargleery. We
found all differences between the mixture and other models to be signtifigtn p < 0.001.



28 21

—transductive

—mixture

N
Ry

226 .820'5
x x
3 25 g
o hd
o o 20
g24 g
g g
<23 <195
22
212 32 128 512 lg2345678910
# nearest neighbors # of latent classes

Fig. 2. Validation results on SUN. Left: average ranking of the transductiveainagia function
of the number of nearest neighbors used to train the local models. Rigitage ranking of the
mixture model, as a function of the number of latent classes.

To address this problem, previous work has explored logailagzhes where one trains
different retrieval functions for each neigborhood in tl¢edspace. The problem of this
approach is that neigborhoods need to be defined a prioritreamndfore the resulting
model is susceptible to the quality of these neighborhoods.

The main contribution of this paper is to show that a neighbod function can be
learned jointly with a ranking function that is a mixture gfegialized ranking func-
tions. We regard the assignment of queries to neighborhasdslatent variable prob-
lem, resulting in a latent variable ranking model which iseldo our knowledge. Al-
though the optimization problem to train this type of modslsot convex, we derive
an efficient alternating method that works very well in pigetExperiments over three
datasets show that the mixture model outperforms both aatei§VM ranker and and
transductive-style approach.
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