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Abstract. Finite-State Transducers (FSTs) are a popular tool for mod-
eling paired input-output sequences, and have numerous applications in
real-world problems. Most training algorithms for learning FSTs rely
on gradient-based or EM optimizations which can be computationally
expensive and suffer from local optima issues. Recently, Hsu et al. [13]
proposed a spectral method for learning Hidden Markov Models (HMMs)
which is based on an Observable Operator Model (OOM) view of HMMs.
Following this line of work we present a spectral algorithm to learn FSTs
with strong PAC-style guarantees. To the best of our knowledge, ours is
the first result of this type for FST learning. At its core, the algorithm
is simple, and scalable to large data sets. We present experiments that
validate the effectiveness of the algorithm on synthetic and real data.

1 Introduction

Probabilistic Finite-State Transducers (FSTs) are a popular tool for modeling
paired input-output sequences, and have found numerous applications in areas
such as natural language processing and computational biology. Most training
algorithms for learning FSTs rely on gradient-based or EM optimizations which
can be computationally expensive and suffer from local optima issues [8,10].
There are also methods that are based on grammar induction techniques [5,3],
which have the advantage of inferring both the structure of the model and the
parameters.

At the same time, for the closely-related problem of learning Hidden Markov
Models (HMMs), different algorithms based on the Observable Operator Model
(OOM) representation of the HMM have been proposed [6,18,13,23]. The main
idea behind OOMs is that the probabilities over sequences of observations gener-
ated by an HMM can be expressed as products of matrix operators [22,4,11,14].
This view of HMMs allows for the development of learning algorithms which
are based on eigen-decompositions of matrices. Broadly speaking, these spectral
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decompositions can reveal relationships between observations and hidden states
by analyzing the dynamics between observations. Other approaches to language
learning, also based on linear algebra, can be found in the literature, e.g. [9,2].

In this paper we show that the OOM idea can also be used to derive learning
algorithms for parameter estimation of probabilistic non-deterministic FSTs.
While learning FSTs is in general hard, here we show that a certain class of FSTs
can be provably learned. Generalizing the work by Hsu et al. [13], we present
a spectral learning algorithm for a large family of FSTs. For this algorithm
we prove strong PAC-style guarantees, which is the first such result for FST
learning to the best of our knowledge. Our sample complexity bound depends
on some natural parameters of the input distribution, including the spread of
the distribution and the expected length of sequences. Furthermore, we show
that for input distributions that follow a Markov process, our general bound
can be improved. This is important for practical applications of FSTs where the
input distribution is well approximated by Markov models, such as in speech
and language processing [15].

Like in the case for HMMs [6,18,13], our learning algorithm is based on
spectral decompositions of matrices derived from estimated probabilities over
triples of symbols. The method involves two simple calculations: first, counting
frequencies on the training set; and second, performing SVD and inversions on
matrices. The size of the input alphabet only has an impact on the first step, i.e.
computing frequencies. Therefore, the algorithm scales well to very large training
sets. Another good property of the method is that only one parameter needs to be
tuned, namely the number of hidden states of the FST. Our theoretical analysis
points to practical ways to narrow down the range of this parameter.

We present synthetic experiments that illustrate the properties of the algo-
rithm. Furthermore, we test our algorithm for the task of transliterating names
between English and Russian. In these experiments, we compare our method
with an Expectation Maximization algorithm, and we confirm the practical util-
ity of the spectral algorithm at learning FSTs on a real task.

The rest of the paper is organized as follows. Section 2 presents background
materials on FSTs, together with their OOM representation. Section 3 presents
the spectral learning algorithm, and Section 4 gives the main theoretical results
of the paper. In sections 5 and 6 we present experiments on synthetic data and
on a transliteration task. Section 7 concludes the paper.

2 Probabilistic Finite State Transducers

In this paper we use Finite-State Transducers (FSTs) that model the conditional
probability of an output sequence y = y1 · · · yt given an input sequence x =
x1 · · ·xt. Symbols xs belong to an input alphabet X = {a1, . . . , ak}, symbols
ys belong to an output alphabet Y = {b1, . . . , bl}, and t is the length of both



sequences.1 We denote the cardinalities of these alphabets as k = |X | and l = |Y|.
Throughout the paper, we use x and y to denote two input-output sequences of
length t, we use a and a′ to denote arbitrary symbols in X and b to denote an
arbitrary symbol in Y. Finally, we use xr:s to denote the subsequence xr · · ·xs.

A probabilistic non-deterministic FST — which we simply call FST — defines
a conditional distribution P of y given x using an intermediate hidden state
sequence h = h1 · · ·ht, where each hs belongs to a set of m hidden states H =
{c1, . . . , cm}. Then, the FST defines:

P(y|x) =
∑
h∈Ht

PrP[y, h|x]

=
∑
h∈Ht

PrP[h1] PrP[y1|h1]

t∏
s=2

PrP[hs|xs−1, hs−1] PrP[ys|hs] (1)

The independence assumptions are that Pr[hs|x, h1:s−1] = Pr[hs|xs−1, hs−1] and
Pr[ys|x, h, y1:s−1] = Pr[ys|hs]. That is, given the input symbol at time s− 1 and
the hidden state at time s − 1 the probability of the next state is independent
of anything else in the sequence, and given the state at time s the probability
of the corresponding output symbol is independent of anything else. We usually
drop the subscript when the FST is obvious from the context.

Equation (1) shows that the conditional distribution defined by an FST P can
be fully characterized using standard transition, initial and emission parameters,
which we define as follows. For each symbol a ∈ X , let Ta ∈ Rm×m be the state
transition probability matrix, where Ta(i, j) = Pr[Hs = ci|Xs−1 = a,Hs−1 = cj ].
Write α ∈ Rm for the initial state distribution, and let O ∈ Rl×m be the emission
probability matrix where O(i, j) = Pr[Ys=bi|Hs=cj ]. Given bi ∈ Y we write Dbi

to denote an m×m diagonal matrix with the ith row of O as diagonal elements.
Similarly, we write Dα for the m×m diagonal matrix with α as diagonal values.

To calculate probabilities of output sequences with FSTs we employ the
notion of observable operators, which is commonly used for HMMs [22,4,11,14].
The following lemma shows how to express P(y|x) in terms of these quantities
using the observable operator view of FSTs.

Lemma 1. For each a ∈ X and b ∈ Y define Aba = Ta Db . Then, the following
holds:

P(y|x) = 1> Aytxt
· · · Ay1x1

α . (2)

To understand the lemma, consider a state-distribution vector αs ∈ Rm,
where αs(i) = Pr[y1:s−1, Hs = ci|x1:s−1]. Initially, α1 is set to α. Then αs+1 =
Aysxs

αs updates the state distribution from positions s to s+ 1 by applying the
appropriate operator, i.e. by emitting symbol ys and transitioning with respect
to xs. The lemma computes αt+1 by applying a chain of computations to the

1 For convenience we assume that input and output sequences are of the same length.
Later in the paper we overcome this limitation by introducing special empty symbols
in the input and output alphabets.



sequence pair x and y. Then, the probability of y given x is given by
∑
i αt+1(i).

Matrices Aba are the observable operators that relate input-output observations
with state dynamics.

Our learning algorithms will learn model parameterizations that are based
on this observable operators view of FSTs. As input they will receive a sample
of input-output pairs sampled from an input distribution D over X ∗; the joint
distribution will be denoted by D⊗ P. In general, learning FSTs is known to be
hard. Thus, our learning algorithms need to make some assumptions about the
FST and the input distribution. Before stating them we introduce some notation.
For any a ∈ X let pa = Pr[X1 = a], and define an “average” transition matrix
T =

∑
a paTa for P and µ = mina pa, which characterizes the spread of D.

Assumptions. An FST can be learned when D and P satisfy the following:
(1) l ≥ m, (2) Dα and O have rank m, (3) T has rank m, (4) µ > 0.

Assumptions 1 and 2 on the nature of the target FST have counterparts in HMM
learning. In particular, the assumption on Dα requires that no state has zero
initial probability. Assumption 3 is an extension for FSTs of a similar condition
for HMM, but in this case depends on D as well as on P. Condition 4 on the input
distribution ensures that all input symbols will be observed in a large sample.
For more details about the implications of these assumptions, see [13].

3 A Spectral Learning Algorithm

In this section we present a learning algorithm for FSTs based on spectral de-
compositions. The algorithm will find a set of operators B for an FST which
are equivalent to the operators A presented above, in the sense that they de-
fine the same distribution. In section 4 we will present a theoretical analysis for
this algorithm, proving strong generalization guarantees when the assumptions
described in the previous section are fulfilled.

In addition, we also present an algorithm to directly retrieve the observation,
initial and transition probabilities. The algorithm is based on a joint decompo-
sition method which, to the best of our knowledge, has never been applied to
OOM learning before.

We start by defining probabilities over bigrams and trigrams of output sym-
bols generated by an FST. Let P ∈ Rl×l be a matrix of probabilities over bigrams
of output symbols, where

P (i, j) = Pr[Y1:2 =bjbi] . (3)

Furthermore, for each two input-output symbols a ∈ X and b ∈ Y we define a
matrix P ba ∈ Rl×l of marginal probabilities over output trigrams as follows:

P ba(i, j) = Pr[Y1:3 =bjbbi|X2 =a] . (4)



Algorithm LearnFST(X ,Y, S,m)

Input:
– X and Y are input-output alphabets
– S = {(x1, y1), . . . , (xn, yn)} is a training set of input-output sequences
– m is the number of hidden states of the FST

Output:
– Estimates of the observable parameters β̂1, β̂∞ and B̂b

a for all a ∈ X and b ∈ Y

1. Use S to compute an empirical estimate of the probability matrices ρ̂, P̂ , and
P̂ b
a for each pair of input-output symbols a ∈ X and b ∈ Y

2. Take Û to be the matrix of top m left singular vectors of P̂
3. Compute the observable FST parameters as: β̂1 = Û>ρ̂, β̂>

∞ = ρ̂>(Û>P̂ )+

and B̂b
a = (Û>P̂ b

a)(Û>P̂ )+ for each a ∈ X and b ∈ Y

Fig. 1. An algorithm for learning FST.

Some algebraic manipulations show the following equivalences (recall that T =∑
a Ta Pr[X1 =a]):

P = O T Dα O
> , (5)

P ba = O Ta Db T Dα O
> . (6)

Note that if Assumptions 1–3 are satisfied, then P has rank m. In this case we
can perform an SVD on P = UΣV ∗ and take U ∈ Rl×m to contain its top m
left singular vectors. It is shown in [13] that under these conditions the matrix
U>O is invertible. Finally, let ρ ∈ Rl be the initial symbol probabilities, where
ρ(i) = Pr[Y1 =bi].

Estimations of all these matrices can be efficiently computed from a sam-
ple obtained from D ⊗ P. Now we use them to define the following observable
representation for P:

β1 = U>ρ , (7)

β>∞ = ρ>(U>P )+ , (8)

Bba = (U>P ba)(U>P )+ . (9)

Next lemma shows how to compute FST probabilities using these new observable
operators. Fig. 1 presents LearnFST, an algorithm that estimates the operators.

Lemma 2 (Observable FST representation). Assume D and P obey As-
sumptions 1–3. For any a ∈ X , b ∈ Y, x ∈ X t and y ∈ Yt, the following hold.

β1 = (U>O)α , (10)

β>∞ = 1>(U>O)−1 , (11)

Bba = (U>O)Aba(U>O)−1 , (12)

P(y|x) = β>∞B
yt
xt
· · · By1x1

β1 . (13)



The proof is analogous to that of Lemma 3 of [13]. We omit it for brevity.

3.1 Recovering the original FST parameters

We now describe an algorithm for recovering the standard FST parameters,
namely O, α and Ta for a ∈ X . Though this is not necessary for computing
sequence probabilities, it may be an appealing approach for applications that
require computing quantities which are not readily available from the observable
representation, e.g. state marginal probabilities.

Similar to before, we will define some probability matrices. Let P b3 ∈ Rl×l be
a matrix of probabilities over output trigrams, where

P b3 (i, j) = Pr[Y1:3 =bjbbi] . (14)

Let P3 ∈ Rl×l account for probabilities of output trigrams, marginalizing the
middle symbol,

P3(i, j) = Pr[Y1 =bj , Y3 =bi] . (15)

This matrix can be expressed as

P3 =
∑
a

∑
b

P ba Pr[X2 =a] . (16)

Finally, let Pa ∈ Rl×l be probabilities of output bigrams, where

Pa(i, j) = Pr[Y1:2 =bjbi|X1 =a] . (17)

Now, for every b ∈ Y define Qb = P b3P
+
3 . Writing T2 =

∑
a Ta Pr[X2 = a], one

can see that
Qb = (OT2)Db(OT2)+ . (18)

The equation above is an eigenvalue-eigenvector decomposition of the matri-
ces Qb. These matrices allow for a joint eigen-decomposition where the eigenval-
ues of Qb correspond to the row of O associated with b.

Our algorithm first computes empirical estimates ρ̂, P̂ b3 , P̂3 and P̂a, and builds

Q̂b. Then it performs a Joint Schur Decomposition of the matrices Q̂b to retrieve
the joint eigenvalues and compute Ô. We use the optimization algorithm from
[12] to perform the joint Schur decomposition. Finally, estimates of transition
matrices for all a ∈ X and initial state probabilities are obtained as:

α̂ = Ô+ ρ̂ , (19)

T̂a = Ô+ P̂a(Dα̂ Ô)+ . (20)

The correctness of these expressions in the error-free case can be easily verified.
Though this method is provided without an error analysis, some experiments

in Section 5 demonstrate that in some cases the parameters recovered with this
algorithm can approximate the target FST better than the observable represen-
tation obtained with LearnFST.

Note that this method is different from those presented in [18,13] for recov-
ering parameters of HMMs. Essentially, their approach requires to find a set of
eigenvectors, while our method recovers a set of joint eigenvalues. Furthermore,
our method could also be used to recover parameters from HMMs.



4 Theoretical Analysis

In this section the algorithm LearnFST is analyzed. We show that, under some
assumptions on the target FST and the input distribution, it will output a good
hypothesis with high probability whenever the sample is large enough. First we
discuss the learning model, then we state our main theorem, and finally we sketch
the proof. Our proof schema follows closely that of [13]; therefore, only the key
differences with their proof will be described, and, in particular, the lemmas
which are stated without proof can be obtained by mimicking their techniques.

4.1 Learning Model

Our learning model resembles that in [1] for learning stochastic rules, but uses a
different loss function. As in the well-known PAC model, we have access to ex-
amples (x, y) drawn i.i.d. from D⊗P. The difference with concept learning is that
now, instead of a deterministic rule, the learning algorithm outputs a stochastic
rule modelling a conditional distribution P̂ that given an input sequence x can be
used to predict an output sequence y. As in all models that learn input-output
relations, the accuracy of the hypothesis is measured relatively to the same input
distribution that was used to generate the training sample. In our case, we are
interested in minimizing

dD(P, P̂) = EX∼D

[∑
y

|P(y|X)− P̂(y|X)|

]
. (21)

This loss function corresponds to the L1 distance between D⊗ P and D⊗ P̂.

4.2 Results

Our learning algorithm will be shown to work whenever D and P satisfy Assump-
tions 1–4. In particular, note that 2 and 3 imply that the mth singular values of
O and P , respectively σO and σP , are positive.

We proceed to state our main theorem. There, instead of restricting ourselves
to input-output sequences of some fixed length t, we consider the more general,
practically relevant case where D is a distribution over X ∗. In this case the bound
depends on λ = EX∼D[|X|], the expected length of input sequences.

Theorem 1. For any 0 < ε, δ < 1, if D and P satisfy Assumptions 1–4, and
LearnFST receives as input m and a sample with n ≥ N examples for some N
in

O

(
λ2ml

ε4µσ2
Oσ

4
P

log
k

δ

)
, (22)

then, with probability at least 1 − δ, the hypothesis P̂ returned by the algorithm
satisfies dD(P, P̂) ≤ ε.



Note that function N in Theorem 1 depends on D through λ, µ and σP —
this situation is quite different from the setting found in HMMs. The price we
pay for choosing a setting with input strings of arbitrary length is a dependence
of type O(λ2/ε4) in the bound. A dependence of type O(t2/ε2) can be obtained,
using similar techniques, in the setting where input strings have fixed length t.
However, we believe the latter setting to be less realistic for practical applica-
tions. Furthermore, a better dependence on ε can be proved for the following
particular case of practical interest.

Recall that if X ∼ D is modeled by an HMM with an absorbing state —
equivalently, an HMM with stopping probabilities — the random variable |X|
follows a phase-type (PH) distribution [19]. It is well known that after a transient
period, these distributions present an exponential rate of decay. In particular,
for any such D there exist positive constants τ1, τ2 such that if t ≥ τ1, then
Pr[|X| ≥ t] = O(e−t/τ2). In this case our techniques yield a bound of type
O(τ21 τ

2
2 /ε

2 log(1/ε)). In many practical problems it is not uncommon to assume
that input sequences follow some kind of markovian process; this alternative
bound can be applied in such cases.

Though it will not be discussed in detail here due to space reasons, the
dependence on l in Equation 22 can be relaxed to take into account only the
most probable symbols; this is useful when D exhibits a power law behavior.
Furthermore, our algorithm provably works (cf. [13]) with similar guarantees in
the agnostic setting where P cannot be exactly modelled with an FST, but is close
to some FST satisfying Assumptions 1–3. Finally, in application domains where
k is large, there may be input symbols with very low probability that are not
observed in a sample. For these cases, we believe that it may be possible to soften
the (implicit) dependence of N on k through 1/µ using smoothing techniques.
Smoothing procedures have been used in practice to solve these issues in many
related problems [7]; theoretical analyses have also proved the validity of this
approach [21].

We want to stress here that our result goes beyond a naive application of
the result by Hsu et al. [13] to FST learning. One could try to learn an HMM
modeling the joint distribution D ⊗ P, but their result would require that this
distribution can be modeled by some HMM; we do not need this assumption in
our result. Another approach would be to learn k distinct HMMs, one for each
input symbol; this approach would miss the fact that the operator O is the same
in all these HMMs, while our method is able to exploit this fact to its advantage
by using the same Û for every operator. In Section 5 we compare our algorithm
against these two baselines and show that it behaves better in practice.

4.3 Proofs

The main technical difference between algorithm LearnFST and spectral tech-
niques for learning HMM is that in our case the operators Bba depend on the
input symbol as well as the output symbol. This implies that estimation er-
rors of Bba for different input symbols will depend on the input distribution; the
occurrence of µ in Equation 22 accounts for this fact.



First we introduce some notation. We will use ‖ · ‖p to denote the usual `p
norms for vectors and the corresponding induced norms for matrices, and ‖ · ‖F
will be used to denote the Frobenius norm. Given n examples (x1, y1), . . . , (xn, yn)
drawn i.i.d. from D⊗P, we denote by na the number of samples such that x2 = a,
which measures how well P̂ ba is estimated. Also define the following estimation

errors: ερ = ‖ρ− ρ̂‖2, εP = ‖P − P̂‖F and εa =
∑
b ‖P ba − P̂ ba‖F . The first lemma

bounds these errors in terms of the sample size. The results follow from a simple
analysis using Chernoff bounds and McDiarmid’s inequality.

Lemma 3. With probability at least 1− δ, the following hold simultaneously:

ερ ≤
√

1/n
(

1 +
√

log(4/δ)
)
, (23)

εP ≤
√

1/n
(

1 +
√

log(4/δ)
)
, (24)

∀a εa ≤
√
l/na

(
1 +

√
log(4/δ)

)
, (25)

∀a na ≥ npa −
√

2npa log(4k/δ) . (26)

Next lemma is almost identical to Lemma 10 in [13], and is repeated here
for completeness. Both this and the following one require that D and P sat-
isfy Assumptions 1–3 described above. These three quantities are used in both
statements:

ε̃1 = ‖(Û>O)−1(β̂1 − β̃1)‖1 , (27)

ε̃∞ = ‖(Û>O)>(β̂∞ − β̃∞)‖∞ , (28)

ε̃a =
∑
b

‖(Û>O)−1(B̂ba − B̃ba)(Û>O)‖1 . (29)

Here, the definitions of β̃1, β̃∞ and B̃ba correspond to substituting U by Û in the
expressions for β1, β∞ and Bba respectively.

Lemma 4. If εP ≤ σP /3, then

ε̃1 ≤ (2/
√

3)ερ
√
m/σO , (30)

ε̃∞ ≤ 4
(
εP /σ

2
P + ερ/(3σP )

)
, (31)

ε̃a ≤ (8/
√

3)
√
m/σO

(
εP /σ

2
P + εa/(3σP )

)
. (32)

The lemma follows from a perturbation analysis on the singular values of
Û>O, Û>P and Û>P̂ . In particular, the condition on εP ensures that Û>O is
invertible.

Our next lemma gives two inequalities useful for bounding the error between
P and the output from LearnFST. The proof extends that of Lemmas 11 and 12
from [13] and is omitted in this version; the main difference is that now bounds
depend on the input sequence. Note that the second inequality is a consequence
of the first one.



Lemma 5. For all x ∈ X t, let εx =
∏t
s=1(1 + ε̃xs

). The following hold:∑
y∈Yt

‖(Û>O)−1(B̂yxβ̂∞ − B̃yxβ̃∞)‖1 ≤ (1 + ε̃1)εx − 1 , (33)

∑
y∈Yt

|P(y|x)− P̂(y|x)| ≤ (1 + ε̃1)(1 + ε̃∞)εx − 1 . (34)

Now we proceed to prove our main theorem.

Proof (Proof of Theorem 1). First note that by the assumptions on D and P
all the above lemmas can be used. In particular, by Lemmas 3 and 4 we have
that, for some constants c1, c2, c3, c4 > 0, the following hold simultaneously with
probability 1− δ:

1. n ≥ c1/σ2
P log(1/δ) implies εP ≤ σP /3,

2. n ≥ c2m/(ε2σ2
O) log(1/δ) implies ε̃1 ≤ ε/40,

3. n ≥ c3/(ε2σ4
P ) log(1/δ) implies ε̃∞ ≤ ε/40, and

4. n ≥ c4λ2lm/(ε4µσ2
Oσ

2
P ) log(k/δ) implies ∀a ε̃a ≤ ε2/(20λ).

Item 4 above uses the fact that u−
√
cu ≥ u/2 for u ≥ 4c. Finally, we use that

(1 + u/t)t ≤ 1 + 2u for all t ≥ 0 and u ≤ 1/2 to obtain the bound:

dD(P, P̂) ≤
∑

|x|<4λ/ε

D(x)
∑
y∈Y|x|

|P(y|x)− P̂(y|x)|+
∑

|x|≥4λ/ε

2D(x) ≤ ε , (35)

where the first term is at most ε/2 by Lemma 5, and the second is bounded
using Markov’s inequality. ut

5 Synthetic Experiments

In this section we present experiments using our FST learning algorithm with
synthetic data. We are interested in four different aspects. First, we want to eval-
uate how the estimation error of the learning algorithm behaves as we increase
the training set size and the difficulty of the target. Second, how the estimation
error degrades with the length of test sequences. In the third place, we want to
compare our algorithms with other, more naive, spectral methods for learning
FST. And four, we compare LearnFST with our other algorithm for recovering
the parameters of an FST using a joint Schur decomposition.

For our first experiment, we generated synthetic data of increasing difficulty
as predicted by our analysis, as follows. First, we randomly selected a distribu-
tion over input sequences of length three, for input alphabet sizes ranging from 2
to 10, and choosing among uniform, gaussian and power distributions with ran-
dom parameters. Second, we randomly selected an FST, choosing from output
alphabet sizes from 2 to 10, choosing a number of hidden states and randomly
generating initial, transition and observation parameters. For a choice of input
distribution and FST, we computed the quantities appearing in the bound ex-
cept for the logarithmic term, and defined c = (λ2ml)/(µσ2

Oσ
4
P ). According to
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Fig. 2. (Left) Learning curves for models at increasing difficulties, as predicted by our
analysis. (Right) L1 distance with respect to the length of test sequences, for models
trained with 32K, 128K and 512K training examples (k = 3, l = 3, m = 2).

our analysis, the quantity c is an estimate of the difficulty of learning the FST. In
this experiment we considered four random models, that fall into different orders
of c. For each model, we generated training sets of different sizes, by sampling
from the corresponding distribution. Figure 2 (left) plots dD(P, P̂) as a function
of the training set size, where each curve is an average of 10 runs. The curves
follow the behavior predicted by the analysis.

The results from our second experiment can be seen in Figure 2 (right),
which plots the error of learning a given model (with k = 3, l = 3 and m = 2)
as a function of the test sequence lengths t, for three training set sizes. The plot
shows that increasing the number of training samples has a clear impact in the
performance of the model on longer sequences. It can also be seen that, as we
increase the number of training samples, the curve seems to flatten faster, i.e.
the growth rate of the error with the sequence length decreases nicely.

In the third experiment we compared LearnFST to another two baseline spec-
tral algorithms. These baselines are naive applications of the algorithm by Hsu
et al. [13] to the problem of FST learning. The first baseline (HMM) learns an
HMM that models the joint distribution D ⊗ P. The second baseline (k-HMM)
learns k different HMMs, one for each input symbol. This correponds to learning
an operator Bba for each pair (a, b) ∈ X × Y using only the observations where
X2 = a and Y2 = b, ignoring the fact that one can use the same U , computed
with all samples, for every operator Bba. In this experiment, we randomly created
an input distribution D and a target FST P (using k = 3, l = 3,m = 2). Then
we randomly sampled training sequence pairs from D ⊗ P, and trained models
using the three spectral algorithms. To evaluate the performance we measured
the L1 distance on all sequence pairs of length 3. Figure 3 (left) plots learn-
ing curves resulting from averaging performance across 5 random runs of the
experiment. It can be seen that with enough examples the baseline algorithms
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Fig. 3. (Left) Comparison with spectral baselines. (Right) Comparison with joint de-
composition method

are outperformed by our method. Furthermore, the fact that the joint HMM
outperforms the conditional FST with small sample sizes is consistent with the
well-known phenomena in classification where generative models can outperform
discriminative models with small sample sizes [20].

Our last experiment’s goal is to showcase the behavior of the algorithm pre-
sented in Section 3.1 for recovering the parameters of an FST using a joint
Schur decomposition. Though we do not have a theoretical analysis of this algo-
rithm, several experiments indicate that its behavior tends to depend more on
the particular model than that of the rest of spectral methods. In particular, in
many models we observe an asymptotic behavior similar to the one presented by
LearnFST, and for some of them we observe better absolute performance. Two
examples of this can be found in Figures 3 (right), where the accuracy versus
the number of examples is plotted for two different, randomly selected models
(with k = 3, l = 3, m = 2).

6 Experiments on Transliteration

In this section we present experiments on a real task in Natural Language Pro-
cessing, machine transliteration. The problem consists of mapping named entities
(e.g. person names, locations, etc.) between languages that have different alpha-
bets and sound systems, by producing a string in the target language that is



Table 1. Properties of the transliteration dataset. “length ratio” is the average ratio
between lengths of input and output training sequences. “equal length” is the percent-
age of training sequence pairs of equal length.

number of training sequences 6,000 average length x 7.84
number of test sequences 943 average length y 8.20
size of X 82 length ratio 0.959
size of Y 34 equal length 53.42%

phonetically equivalent to the string in the source language. For example, the
English word “brooklyn” is transliterated into Russian as “бруклин”. Because
orthographic and phonetic systems across languages differ, the lengths of paired
strings also differ in general. The goal of this experiment is to test the perfor-
mance of our learning algorithm in real data, and to compare it with a standard
EM algorithm for training FSTs.

We considered the English to Russian transliteration task of the News shared
task [17]. Training and test data consists of pairs of strings. Table 1 gives addi-
tional details on the dataset.

A standard metric to evaluate the accuracy of a transliteration system is
the normalized edit distance (ned) between the correct and predicted translit-
erations. It counts the minimum number of character deletions, insertions and
substitutions that need to be made to transform the predicted string into the
correct one, divided by the length of the correct string and multiplied by 100.

In order to apply FSTs to this task we need to handle sequence pairs of un-
equal lengths. Following the classic work on transliteration by Knight and Graehl
[16] we introduced special symbols in the output alphabet which account for an
empty emission and every combination of two output symbols; thus, our FSTs
can map an input character to zero, one or two output characters. However,
the correct character alignments are not known. To account for this, for every
training pair we considered all possible alignments as having equal probability.2

It is easy to adjust our learning algorithm such that when computing the prob-
ability estimates (step 1 in the algorithm of Figure 1) we consider a distribution
over alignments between training pairs. This can be done efficiently with a sim-
ple extension to the classic dynamic programming algorithm for computing edit
distances.

At test, predicting the best output sequence (summing over all hidden se-
quences) is not tractable. We resorted to the standard approach of sampling,
where we used the FST to compute conditional estimates of the next output
symbol (see [13] for details on these computations).

2 The alignments between sequences are a missing part in the training data, and
learning such alignments is in fact an important problem in FST learning (e.g.,
see [16]). However, note that our focus is not on learning alignments, but instead
on learning non-deterministic transductions between aligned sequences. In practice,
our algorithm could be used with an iterative EM method to learn both alignment
distributions and hidden states, and we believe future work should explore this line.



Table 2. Normalized edit distance at test (ned) of a model as a function of the number
of hidden states (m), using all training samples. σ is the mth singular value of P̂ .

m 1 2 3 4 5

σ 0.0929 0.0914 0.0327 0.0241 0.0088
ned 21.769 21.189 21.224 26.227 71.780

Table 3. Running times (averaged, in seconds) of a single EM iteration, for different
number of training pairs and two different values for m. The number in parenthesis is
the number of iterations it takes to reach the best test performance (see Figure 4).

75 350 750 1500 3000 6000

m = 2 1.15 (120) 3.53 (70) 6.73 (140) 10.60 (120) 19.8 (50) 37.74 (40)
m = 3 1.16 (50) 3.55 (80) 6.75 (40) 10.62 (180) 19.9 (180) 37.78 (30)

The only free parameter of the FST is the number of hidden states (m).
There is a trade-off between increasing the number of hidden states, yielding
lower approximation error, and increasing the estimation error. In particular,
our analysis states that the estimation error depends on the mth singular value
of P̂ . Table 2 illustrates this trade-off. Clearly, the singular values are a good
indicator of the proper range for m.

We also trained FST models using EM, for different number of hidden states.
We tried multiple random initializations and ran EM for a sufficiently large
number of iterations (200 in our experiments). We evaluated each EM model at
every 10 iterations on the test, and chose the best test performance.

Figure 4 shows the best learning curves using the spectral algorithm and
EM, for m = 2 and m = 3. The performance of the spectral method is similar
to that of EM for large training sizes while for smaller training sizes EM seems
to be unable to find a good model. Our experience at running EM was that for
large training sizes, the performance of different runs was similar, while for small
training sets the error rates of different runs had a large variance. The spectral
method seems to be very stable at finding good solutions.

We also compared the two learning methods in terms of computation time.3.
Table 3 shows the time it takes to complete an iteration under EM, together
with the number of iterations it takes to reach the best error rates at tests.
In comparison, the spectral method takes about 13 seconds to compute the
statistics on the larger training set (step 1 on algorithm 1) and about 13 seconds
to perform the SVD and compute the operators (steps 2 and 3 on algorithm 1)
which gives a total of 26 seconds for the largest setting.

Comparing to state-of-the-art on the News data, our model obtains 87% on
the F1 metric, while the range of performances goes from 86.5% to 93% [17]4.

3 We used Matlab on an Intel Xeon 2.40GHz machine with 12Gb of RAM running
Linux.

4 Normalized edit distance was not measured in the News’09 Shared Task.
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Fig. 4. Learning curves for transliteration experiments using the spectral algorithm
and EM, for different number of hidden states. Error is measured as Normalized Edit
Distance.

It should be noted that transliteration systems exploit combinations of several
models optimized for the task. In contrast, we use out-of-the-box FSTs.

7 Conclusions

In this paper we presented a spectral learning algorithm for probabilistic non-
deterministic FSTs. The main result are strong PAC-style guarantees, which, to
our knowledge, are the first for FST learning. Furthermore, we present extensive
experiments demonstrating the effectiveness of the proposed method in practice,
when learning from synthetic and real data.

An attractive property of our algorithm is its speed and scalability at training.
Experiments on a transliteration task show that, in practice, it is an effective
algorithm for learning FSTs. Our models could be used as building blocks to
solve complex tasks, such as parsing and translation of natural languages, and
planning in reinforcement learning.

Future work should improve the behavior of our algorithm in large input
alphabets by means of smoothing procedures. In practice, this should improve
the robustness of the method and make it applicable to a wider set of tasks.
Other lines of future research include: conducting a theoretical analysis of the
joint Schur approach for recovering parameters of HMM and FST, and exploring
the power of our algorithm for learning more general families of transductions.
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