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Summary
I FSTs model input-output relations with hidden states
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I Main contribution: a spectral learning algorithm for FSTs
(Chang ’96, Mossel-Roch ’05, Hsu et al. ’09, Siddiqi et al. ’10)

I Key concept: Represent transition and emission structure with
Observable Operator Models

I Advantages: fast and scalable, strong guarantees, beats EM

Observator Operator Models for FST
X = {a1, . . . ,ak}, Y = {b1, . . . ,bl}, H = {c1, . . . , cm}
Given (x , y) ∈ (X × Y)t, model computes a conditional probability
as

Pr[ y | x ] = 1>Ayt
xt · · ·A

y1
x1 α

Ab
a = Ta Db ∈ Rm×m (factorized operator)

Ta(i , j) = Pr[Hs = ci|Xs−1 = a,Hs−1 = cj] ∈ Rm×m (state transition)

Db(i , j) = δi ,j Pr[Ys = b|Hs = cj] ∈ Rm×m (observation emission)

O(i , j) = Pr[Ys = bi|Hs = cj] ∈ Rl×m (collected emissions)

α(i) = Pr[H1 = ci] ∈ Rm (initial probabilites)

Choice of operator Ab
a depends only on observable symbols . . .

. . . but operator parameters are conditioned by hidden states

Learnable Set of Observable Operators
Idea

(subspace identification methods for linear systems, ’80s)

Find a basis for the state space such that operators in the new
basis are related to observable quantities

Find a basis Q where operators can be expressed in terms of
unigram, bigram and trigram probabilities

ρ(i) = Pr[Y1 = bi] ∈ Rl

P(i , j) = Pr[Y1 = bj,Y2 = bi] ∈ Rl×l

Pb
a (i , j) = Pr[Y1 = bj,Y2 = b,Y3 = bi|X2 = a] ∈ Rl×l

Theorem (ρ, P and Pb
a are sufficient statistics)

Let P = UΣV ∗ be a thin SVD decomposition, then Q = U>O yields
(under certain assumptions)

Q α = U>ρ
1>Q−1 = ρ>(U>P)+

Q Ab
a Q−1 = (U>Pb

a )(U>P)+

Spectral Learning Algorithm
Input: number of states m and sample S = {(x1, y1), . . . , (xn, yn)}
1. Compute unigram ρ̂, bigram P̂ and trigram P̂b

a relative
frequencies in S

2. Perform SVD on P̂ and take Û with top m left singular vectors
3. Compute operators using matrix operations on ρ̂, P̂, P̂b

a and Û
Time complexity: O(n + |Y|3)

PAC-style Result
I X random variable over X ∗ with λ = E[|X |], µ = mina Pr[X1 = a]

I Y random variable over Y∗ whose distribution conditioned on X
is given by an FST with m states

I Sampling i.i.d. from (X ,Y )

Theorem
For any 0 < ε, δ < 1, if the algorithm receives a sample of size

n ≥ O

(
λ2m|Y|
ε4µσ2
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4
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log
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)
,

(σO and σP are m-th singular
values of O and P in target)

then with probability at least 1− δ the hypothesis P̂r satisfies

E

∑
y∈Y∗

∣∣∣Pr[y |X ]− P̂r[y |X ]
∣∣∣
 ≤ ε .

(L1 distance between joint
distributions DX ,Y and DX ,Ŷ )

Synthetic Experiments
Goal: Compare against baselines when learning hypothesis hold

Target: Randomly generated with |X | = 3, |Y| = 3, |H| = 2
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I HMM: model input-output
jointly

I k -HMM: one model for each
input symbol

I Results averaged over 5 runs

Transliteration Experiments
Goal: Compare against EM in a real task (where modeling assumptions fail)

Task: English to Russian transliteration (brooklyn→ áðóêëèí)
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Spectral, m=2
Spectral, m=3
EM, m=2
EM, m=3

Training times
Spectral 26 s
EM (iteration) 37 s
EM (best) 1133 s

I Alignment and inference dealt with

standard techniques

I Test size: 943, |X | = 82, |Y| = 34
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