

# A Spectral Learning Algorithm for Finite State Transducers

Borja Balle, Ariadna Quattoni, Xavier Carreras Universitat Politècnica de Catalunya

# Summary

FSTs model input-output relations with *hidden states* 



- Main contribution: a spectral learning algorithm for FSTs (Chang '96, Mossel-Roch '05, Hsu et al. '09, Siddiqi et al. '10)
- Key concept: Represent transition and emission structure with **Observable Operator Models**

### Spectral Learning Algorithm

Input: number of states *m* and sample  $S = \{(x^1, y^1), \dots, (x^n, y^n)\}$ 

1. Compute unigram  $\hat{\rho}$ , bigram  $\hat{P}$  and trigram  $\hat{P}_a^b$  relative frequencies in S

2. Perform SVD on  $\widehat{P}$  and take  $\widehat{U}$  with top *m* left singular vectors

3. Compute operators using matrix operations on  $\hat{\rho}$ ,  $\hat{P}$ ,  $\hat{P}_a^b$  and  $\hat{U}$ Time complexity:  $O(n + |\mathcal{Y}|^3)$ 

#### PAC-style Result

- ► X random variable over  $\mathcal{X}^*$  with  $\lambda = E[|X|], \mu = \min_a Pr[X_1 = a]$
- Y random variable over  $\mathcal{Y}^*$  whose distribution conditioned on X is given by an FST with *m* states
- Sampling i.i.d. from (X, Y)
- Advantages: fast and scalable, strong guarantees, beats EM

**Observator Operator Models for FST**  $\mathcal{X} = \{a_1, \ldots, a_k\}, \, \mathcal{Y} = \{b_1, \ldots, b_l\}, \, \mathcal{H} = \{c_1, \ldots, c_m\}$ Given  $(x, y) \in (\mathcal{X} \times \mathcal{Y})^t$ , model computes a *conditional probability* as

$$\Pr[y \,|\, x\,] = \mathbf{1}^{\top} A_{x_t}^{y_t} \cdots A_{x_1}^{y_1} \alpha$$

 $A_a^b = T_a D_b \in \mathbb{R}^{m \times m}$ (factorized operator)  $T_a(i,j) = \Pr[H_s = c_i | X_{s-1} = a, H_{s-1} = c_j] \in \mathbb{R}^{m \times m}$ (state transition)  $D_b(i,j) = \delta_{i,i} \Pr[Y_s = b | H_s = c_i] \in \mathbb{R}^{m \times m}$ (observation emission)  $O(i,j) = \Pr[Y_s = b_i | H_s = c_i] \in \mathbb{R}^{l \times m}$ (collected emissions)  $\alpha(i) = \Pr[H_1 = c_i] \in \mathbb{R}^m$ (initial probabilites)

*Choice* of operator  $A_a^b$  depends only on *observable* symbols ...

... but operator *parameters* are conditioned by *hidden* states

# Learnable Set of Observable Operators

Idea

(subspace identification methods for linear systems, '80s)

Find a basis for the state space such that operators in the new basis are related to observable quantities

#### Theorem

For any  $0 < \varepsilon, \delta < 1$ , if the algorithm receives a sample of size

$$n \geq O\left(\frac{\lambda^2 m |\mathcal{Y}|}{\varepsilon^4 \mu \sigma_O^2 \sigma_P^4} \log \frac{|\mathcal{X}|}{\delta}\right)$$

 $_{O}$  and  $\sigma_{P}$  are m-th singular values of O and P in target)

then with probability at least  $1 - \delta$  the hypothesis Pr satisfies

$$\mathsf{E}\left[\sum_{y\in\mathcal{Y}^*}\left|\mathsf{Pr}[y|X] - \widehat{\mathsf{Pr}}[y|X]\right|\right] \leq \varepsilon \quad . \quad \text{(L}_1 \text{ distance between joint distributions } D_{X,Y} \text{ and } D_{X,\hat{Y}})}$$

#### Synthetic Experiments

Goal: Compare against baselines when learning hypothesis hold

Target: Randomly generated with  $|\mathcal{X}| = 3$ ,  $|\mathcal{Y}| = 3$ ,  $|\mathcal{H}| = 2$ 



- HMM: model input-output jointly
- k-HMM: one model for each input symbol

26 s

37 s

Results averaged over 5 runs

#### **Transliteration Experiments**

Find a basis Q where operators can be expressed in terms of unigram, bigram and trigram probabilities

> $\rho(i) = \Pr[Y_1 = b_i] \in \mathbb{R}^{\prime}$  $P(i,j) = \Pr[Y_1 = b_i, Y_2 = b_i] \in \mathbb{R}^{l \times l}$  $P_a^b(i,j) = \Pr[Y_1 = b_i, Y_2 = b, Y_3 = b_i | X_2 = a] \in \mathbb{R}^{l \times l}$

Theorem ( $\rho$ , *P* and  $P_a^b$  are sufficient statistics) Let  $P = U\Sigma V^*$  be a thin SVD decomposition, then  $Q = U^{\top}O$  yields (under certain assumptions)

$$egin{aligned} oldsymbol{Q} lpha &= oldsymbol{U}^ op 
ho \ oldsymbol{1}^ op oldsymbol{Q}^{-1} &= 
ho^ op (oldsymbol{U}^ op oldsymbol{P})^+ \ oldsymbol{Q} oldsymbol{A}_a^b oldsymbol{Q}^{-1} &= (oldsymbol{U}^ op oldsymbol{P}_a^b) (oldsymbol{U}^ op oldsymbol{P})^+ \end{aligned}$$

Goal: Compare against EM in a real task (where modeling assumptions fail)

Task: English to Russian transliteration (brooklyn  $\rightarrow$  бруклин)



• Test size: 943,  $|\mathcal{X}| = 82$ ,  $|\mathcal{Y}| = 34$ 

Acknowledgements: This work was partially supported by the EU PASCAL2 Network of Excellence (FP7-ICT-216886), and by a Google Research Award. Borja Balle was supported by an FPU fellowship (AP2008-02064) of the Spanish Ministry of Education. The Spanish Ministry of Science and Innovation supported Ariadna Quattoni (JCI-2009-04240) and Xavier Carreras (RYC-2008-02223 and "KNOW2" TIN2009-14715-C04-04).