Non-Projective Parsing for Statistical Machine Translation

Xavier Carreras and Michael Collins

MIT CSAIL

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ の < @

Phrase-based Translation

segmentation + phrase selection + distortion

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Phrase-based Translation

segmentation + phrase selection + distortion

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Phrase-based Translation with TAG operations

segmentation + s-phrase selection + adjunctions

Phrase-based Translation with TAG operations

segmentation + s-phrase selection + adjunctions

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Phrase-based Translation with TAG operations

Contributions (I)

A TAG-based syntactic translation model. Properties:

Retains the full set of lexical entries of a phrase-based system

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Straightforward integration of a syntactic language model

segmentation + s-phrase selection + non-projective adjunctions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

segmentation + s-phrase selection + non-projective adjunctions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

segmentation + s-phrase selection + non-projective adjunctions

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Contributions (II)

We model reordering with flexible non-projective adjunctions.

How to control reorderings?

 A discriminative model inspired by work in dependency parsing (e.g. [McDonald et al. 05])

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

- Hard constraints
- How to decode efficiently?
 - A novel beam-search algorithm

Translation as TAG-based Parsing

Constraints on Reorderings

Efficient Decoding

Experiments

A TAG formalism [Carreras, Collins and Koo 2008]

Basic units are spines

Spines are combined using adjunction operations

A TAG formalism [Carreras, Collins and Koo 2008]

Basic units are spines

Spines are combined using adjunction operations

A TAG formalism [Carreras, Collins and Koo 2008]

Basic units are spines

Spines are combined using adjunction operations

S-phrases: Syntactic Phrase-entries for Translation

< ロ > < 同 > < 回 > < 回 >

An s-phrase consists of:

- Foreign words
- English words
- A syntactic structure
- An alignment

Training example = source sentence + English sentence + English parse tree

▶ We use phrasal entries from a standard phrase-based approach

Training example = source sentence + English sentence + English parse tree

▶ We use phrasal entries from a standard phrase-based approach

Training example = source sentence + English sentence + English parse tree

▶ We use phrasal entries from a standard phrase-based approach

Training example = source sentence + English sentence + English parse tree

▶ We use phrasal entries from a standard phrase-based approach

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

-

Training example = source sentence + English sentence + English parse tree

▶ We use phrasal entries from a standard phrase-based approach

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Derivations

wir müssen auch diese kritik ernst nehmen

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ○三 ○ ○ ○ ○

Derivations

A derivation:

Step 1: segment the input sentence,

and choose an s-phrase for each segment

Derivations

A derivation:

- Step 1: segment the input sentence,
 - and choose an s-phrase for each segment
- Step 2: connect s-phrases with adjunctions

▶ Model score for a derivation *d*:

$$score(d) = score_{LM}(d) + score_{P}(d)$$

+ $score_{SYN}(d) + score_{R}(d)$

- score_{LM} is a trigram language model
- score_P is a sum of standard phrase-based scores
- score_{SYN} is a syntactic language model [Charniak et al. 03] [Shen et al. 08] (probabilities are associated with adjunctions)
- score_R is a sum of discriminative adjunction scores

▶ Model score for a derivation *d*:

$$score(d) = score_{LM}(d) + score_{P}(d) + score_{SYN}(d) + score_{R}(d)$$

- score_{LM} is a trigram language model
- score_P is a sum of standard phrase-based scores
- score_{SYN} is a syntactic language model [Charniak et al. 03] [Shen et al. 08] (probabilities are associated with adjunctions)
- score_R is a sum of discriminative adjunction scores

▶ Model score for a derivation *d*:

$$score(d) = score_{LM}(d) + score_{P}(d)$$

+ $score_{SYN}(d) + score_{R}(d)$

- score_{LM} is a trigram language model
- score_P is a sum of standard phrase-based scores
- score_{SYN} is a syntactic language model [Charniak et al. 03] [Shen et al. 08] (probabilities are associated with adjunctions)
- score_R is a sum of discriminative adjunction scores

▶ Model score for a derivation *d*:

$$score(d) = score_{LM}(d) + score_{P}(d) + score_{SYN}(d) + score_{R}(d)$$

- score_{LM} is a trigram language model
- score_P is a sum of standard phrase-based scores
- score_{SYN} is a syntactic language model [Charniak et al. 03] [Shen et al. 08] (probabilities are associated with adjunctions)
- score_R is a sum of discriminative adjunction scores

▶ Model score for a derivation *d*:

$$score(d) = score_{LM}(d) + score_{P}(d) + score_{SYN}(d) + score_{R}(d)$$

- score_{LM} is a trigram language model
- score_P is a sum of standard phrase-based scores
- score_{SYN} is a syntactic language model [Charniak et al. 03] [Shen et al. 08] (probabilities are associated with adjunctions)
- score_R is a sum of discriminative adjunction scores

Two challenges

All permutations of s-phrases are possible.

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」 のへで

Two challenges:

- 1. Constraining reorderings
- 2. Search

Translation as TAG-based Parsing

Constraints on Reorderings

Efficient Decoding

Experiments

$score_R$: A Discriminative Dependency Model

 $score_R(d)$ is a **discriminative dependency model** (related to work in dependency parsing (e.g. [McDonald et al. 05]))

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

$score_R$: A Discriminative Dependency Model

 $score_R(d)$ is a **discriminative dependency model** (related to work in dependency parsing (e.g. [McDonald et al. 05]))

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

π -constituent constraint

Define π -constituent: a head spine with all its descendants **Constraint** any π -constituent must be aligned to a contiguous substring in the source sentence

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ◆ 母 ト ◆ 母 ト

Translation as TAG-based Parsing

Constraints on Reorderings

Efficient Decoding

Experiments

Decoding as Parsing

- > Projective parsing: each constituent has an associated **span**
- A generalization: each constituent has a **bit-string** recording which foreign words have been translated
- Beam search strategy: ensures that the top N analyses for each foreign word are explored at each stage

Translation as TAG-based Parsing

Constraints on Reorderings

Efficient Decoding

Experiments

Experiments

German to English using Europarl data (750K training sentences) Development:

System	BLEU score
Syntax-based	25.2
Syntax (no disc. model)	23.7 (-1.5)
Syntax (no π -c constraint)	24.4 (-0.8)

<□> <□> <□> <□> <=> <=> <=> <=> <<

Experiments

German to English using Europarl data (750K training sentences) Development:

System	BLEU score
Syntax-based	25.2
Syntax (no disc. model)	23.7 (-1.5)
Syntax (no π -c constraint)	24.4 (-0.8)

Test:

System	BLEU score
Phrase-based system (Pharaoh)	24.58
Syntax-based system	25.04 (+0.46)

significant (p = 0.021) under paired bootstrap resampling [Koehn 04] close to significant (p = 0.058) under the sign test [Collins et al. 05]

Human Evaluations

Ref: Now, however, we are seeing that president Putin is pursuing a policy of openness towards the west.

Now, however, we see that mr president Putin is pursuing a policy of openness towards the west.

(日)

We are, however, now that president Putin a policy of openness to the west out of blackmail.

Human Evaluations

Ref: Now, however, we are seeing that president Putin is pursuing a policy of openness towards the west.

Syn: Now, however, we see that mr president Putin is pursuing a policy of openness towards the west.

PB: We are, however, now that president Putin a policy of openness to the west out of blackmail.

	Syntax	PΒ	=	Total
Syntax	51	3	7	61
PB	1	25	11	37
=	21	14	67	102
Total	73	42	85	200

both results are significant with p < 0.05 under the sign test

< D > < 同 > < E > < E > < E > < 0 < 0</p>

Summary

A TAG-based syntactic tranlastion model

Non-projective adjunctions for reordering:

- Arbitrary reorderings
- Discriminative dependency model

Summary

A TAG-based syntactic tranlastion model

Non-projective adjunctions for reordering:

- Arbitrary reorderings
- Discriminative dependency model

Future work: Condition on syntactic structure of the source string

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆