TAG, Dynamic Programming, and the Perceptron for Efficent, Feature-Rich Parsing

Xavier Carreras, Michael Collins and Terry Koo

MIT CSAIL

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Discriminative Models for Parsing

Structured Prediction methods like CRF or Perceptron train linear models defined on factored representations of structures:

Parse(
$$\mathbf{x}$$
) = argmax $\sum_{y \in \mathcal{Y}(\mathbf{x})} \mathbf{f}(\mathbf{x}, r) \cdot \mathbf{w}$

Main Advantage:

 \blacktriangleright Flexibility of feature definitions in $\mathbf{f}(\mathbf{x},r)$

Critical Difficulty:

Training algorithms repeatedly parse the training sentences.
 Efficient parsing algorithms are crucial.

A Feature-rich Consituent Parsing Model

We present a TAG-style model to recover constituent trees.

It defines feature vectors looking at:

- CFG-based structure
- Dependency relations between lexical heads
- Second-order dependency relations with sibling and grandparent dependencies

These can be combined with surface features of the sentence.

Efficient Coarse-to-fine Inference

We use a coarse-to-fine parsing strategy on dependency graphs:

- We use general versions of the Eisner algorithm to parse with the full TAG parser
- Simple first-order dependency models restrict the space of the full model, making parsing feasible

We train a parser with discriminative methods at full-scale.

TAG + Dynamic Programming + Perceptron

We use the Averaged Perceptron to train the parameters of our TAG model:

w = 0, w_a = 0
For t = 1...T
For each training example (x, y)
1. z = Parse(x; w)
2. if y ≠ z then w = w + f(x, y) - f(x, z)
3. w_a = w_a + w
return w_a

We obtain state-of-the-art results for English.

▲日▼▲□▼▲□▼▲□▼ □ ののの

Outline

A TAG-style Linear Model for Constituent Parsing Representation: Spines and Adjunctions Model and Features

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Fast Inference with our TAG

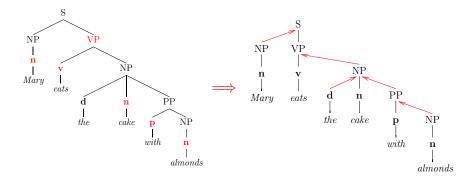
Parsing the WSJ Treebank

Tree-Adjoining Grammar (TAG)

- ▶ In TAG formalisms [Joshi et al. 1975]:
 - The basic elements are trees
 - Trees can be combined to form bigger trees
- ▶ There are many variations of TAG
- ► Here we present a simple TAG-style grammar:

- Allows rich features
- Allows efficient inference

Decomposing trees into spines and adjunctions



Syntactic constituents sit on top of their lexical heads. The underlying structure looks like a dependency structure.

< ロ > < 同 > < 回 > < 回 >

Spines

Spines are lexical units with a chain of unary projections.

They are the elementary trees in our TAG. (see also [Shen & Joshi 2005])

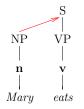
NP	\mathbf{S}	\mathbf{S}	\mathbf{det}	NP	NP	ADVP	PP
	1	1			1		
\mathbf{n}	VP	VP		n	\mathbf{n}	\mathbf{adv}	\mathbf{prep}
	1		the			l l	
Mary	\mathbf{v}	\mathbf{v}		cake	door	quickly	with
	Í	1					
	eats	loves					

We build a dictionary of spines appearing in the WSJ.

Sister Adjunctions

Sister adjunctions are used to combine spines to form trees.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @



An adjunction operation attaches:

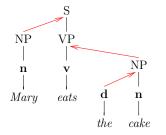
- A modifier spine
- ► To some position of a head spine

Sister Adjunctions

Sister adjunctions are used to combine spines to form trees.

・ロト ・ 雪 ト ・ ヨ ト

э

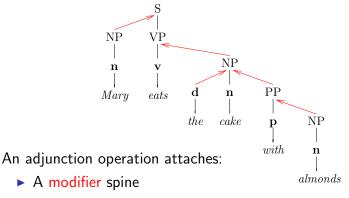


An adjunction operation attaches:

- A modifier spine
- ► To some position of a head spine

Sister Adjunctions

Sister adjunctions are used to combine spines to form trees.

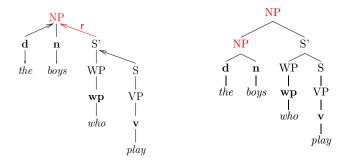


To some position of a head spine

Regular Adjunctions

We also consider a regular adjunction operation.

It adds one level to the syntactic constituent it attaches to.

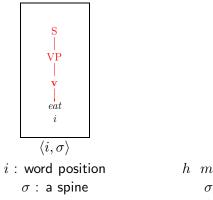


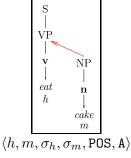
N.B.: This operation is simpler than adjunctions in classic TAG, resulting in more efficient parsing costs.

Derivations in our TAG

A tree is a set with two types of elements:

spines

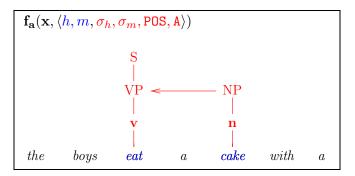




h m: head and modifier positions

- $\sigma_h \ \sigma_m$: spines of h and m
- POS : the attachment position
 - A : sister or regular

A TAG-style Linear Model



$$\begin{aligned} \text{Parser}(\mathbf{x}) &= \operatorname{argmax}_{y \in \mathcal{Y}(\mathbf{x})} \quad \sum_{\langle i, \sigma \rangle \in S(y)} \mathbf{f}_{\mathbf{s}}(\mathbf{x}, \langle i, \sigma \rangle) \cdot \mathbf{w} + \\ &\sum_{\langle h, m, \ldots \rangle \in A(y)} \mathbf{f}_{\mathbf{a}}(\mathbf{x}, \langle h, m, \ldots \rangle) \cdot \mathbf{w} \end{aligned}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ... □

Outline

A TAG-style Linear Model for Constituent Parsing Representation: Spines and Adjunctions Model and Features

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Fast Inference with our TAG

Parsing the WSJ Treebank

Parsing with the Eisner Algorithms

- ► Our TAG structures are a general form of dependency graph:
 - Dependencies are adjunctions between spines
 - Labels include the type and position of the adjunction

▶ Parsing can be done with the Eisner [1996,2000] algorithms

Applies to splittable dependency representations

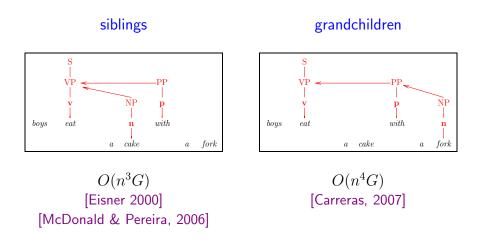
 i.e., left and right modifiers are adjoined independently

- Words in the dependency graph can have senses, like our spines
- Parsing time is $O(n^3G)$

Can be extended to include second-order features.

Second-Order Features in our TAG

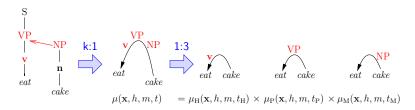
We incorporate recent extensions to the Eisner algorithm:



Exact Inference is Too Expensive

- Parsing time is at least O(n³G).
 (it is O(n⁴G) in our final model)
- The constant G is polynomial in the number of possible spines for any word, and the maximum height of any spine. This is prohibitive for real parsing tasks (G > 5000).
- Solution: Coarse-to-fine inference (e.g. [Charniak 97] [Charniak & Johnson 05] [Petrov & Klein 07])
 - Use simple dependency parsing models to restrict the space of possible structures of the full model.

A Coarse-to-fine Strategy for Fast Parsing



- First-order dependency models estimate conditional distributions of simple dependencies
- ▶ We build a beam of most likely dependencies:
 - Inside-Outside inference, in $O(n^3H)$ with $H\sim 50$
 - We can discard 99.6 of dependencies and retain 98.5 of correct constituents
- The full model is constrained to the pruned space both at training and testing

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

A TAG-style Linear Model: Summary

A simple TAG-style model, based in spines and adjunctions:

- It allows a wide variety of features
- It's splittable, allowing efficient inference
 - $O(n^3G)$ for CFG-style, head-modifier and sibling features
 - $O(n^4G)$ for grandchildren dependency features
- The backbone dependency graph can be pruned with simple first-order dependency models

Other TAG formalisms have more expensive parsing algorithms [Chiang 2003] [Shen & Joshi 2005].

Outline

A TAG-style Linear Model for Constituent Parsing Representation: Spines and Adjunctions Model and Features

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Fast Inference with our TAG

Parsing the WSJ Treebank

Parsing the WSJ Treebank

Extraction of our TAG derivations from WSJ trees

Straighforward process using the head rules of [Collins 1999]

▲日▼▲□▼▲□▼▲□▼ □ ののの

- ▶ \sim 300 spines, \sim 20 spines/token
- Learning:
 - Train first-order models using EG [Collins et al. 2008]
 5 training passes, 5 hours per pass
 - Train TAG-style full model using Avg. Perceptron 10 training passes, 12 hours per pass
- Parse test data and evaluate

Test results on WSJ data

Full Parsers	precision	recall	F_1
Charniak 2000	89.5	89.6	89.6
Petrov & Klein 2007	90.2	89.9	90.1
this work	91.4	90.7	91.1

Rerankers	precision	recall	F_1
Collins 2000	89.9	89.6	89.8
Charniak & Johnson 2005			91.4
Huang 2008	•	•	91.7

Evaluating Dependencies

- We look at the accuracy of recovering unlabeled dependencies
- We compare to state-of-the-art dependency parsing models using the same features and learner :

training structures	dependency accuracy		
unlabeled dependencies (*)	92.0		
labeled dependencies (*)	92.5		
adjoined spines	93.5		

(*) results from [Koo et al., ACL 2008]

constituent structure greatly helps parsing performance

Summary

A new efficient and expressive discriminative model for full consituent parsing:

- Represents phrase structure with a TAG-style grammar
- Has rich features combining phrase structure and lexical heads due to our spines being basic elements
- Parsing is efficient with the Eisner methods due to the splittable nature of our adjunctions

A very effective method to prune dependency-based graphs:

key to discriminative training at full scale

Thanks!