
TAG, Dynamic Programming,

and the Perceptron

for Efficent, Feature-Rich Parsing

Xavier Carreras, Michael Collins and Terry Koo

MIT CSAIL



Discriminative Models for Parsing

Structured Prediction methods like CRF or Perceptron train linear
models defined on factored representations of structures:

Parse(x) = argmax
y∈Y(x)

∑

r∈y

f(x, r) ·w

Main Advantage:

◮ Flexibility of feature definitions in f(x, r)

Critical Difficulty:

◮ Training algorithms repeatedly parse the training sentences.
Efficient parsing algorithms are crucial.



A Feature-rich Consituent Parsing Model

We present a TAG-style model to recover constituent trees.

It defines feature vectors looking at:

◮ CFG-based structure

◮ Dependency relations between lexical heads

◮ Second-order dependency relations
with sibling and grandparent dependencies

These can be combined with surface features of the sentence.



Efficient Coarse-to-fine Inference

We use a coarse-to-fine parsing strategy on dependency graphs:

◮ We use general versions of the Eisner algorithm to parse with
the full TAG parser

◮ Simple first-order dependency models restrict the space of the
full model, making parsing feasible

We train a parser with discriminative methods at full-scale.



TAG + Dynamic Programming + Perceptron

We use the Averaged Perceptron to train the parameters of our
TAG model:

◮ w = 0, wa = 0

◮ For t = 1 . . . T

◮ For each training example (x, y)

1. z = Parse(x;w)
2. if y 6= z then

w = w + f(x, y) − f(x, z)
3. wa = wa + w

◮ return wa

We obtain state-of-the-art results for English.



Outline

A TAG-style Linear Model for Constituent Parsing
Representation: Spines and Adjunctions
Model and Features

Fast Inference with our TAG

Parsing the WSJ Treebank



Tree-Adjoining Grammar (TAG)

◮ In TAG formalisms [Joshi et al. 1975]:
◮ The basic elements are trees
◮ Trees can be combined to form bigger trees

◮ There are many variations of TAG

◮ Here we present a simple TAG-style grammar:
◮ Allows rich features
◮ Allows efficient inference



Decomposing trees into spines and adjunctions

S

NP

n

Mary

VP

v

eats

NP

d

the

n

cake

PP

p

with

NP

n

almonds

=⇒
v

VP

S

n

NP

eatsMary d

the

n

NP

cake p

PP

with n

NP

almonds

Syntactic constituents sit on top of their lexical heads.
The underlying structure looks like a dependency structure.



Spines

Spines are lexical units with a chain of unary projections.

They are the elementary trees in our TAG.
(see also [Shen & Joshi 2005])

NP

n

Mary

S

VP

v

eats

S

VP

v

loves

det

the

NP

n

cake

NP

n

door

ADVP

adv

quickly

PP

prep

with

We build a dictionary of spines appearing in the WSJ.



Sister Adjunctions

Sister adjunctions are used to combine spines to form trees.

v

VP

S

n

NP

eatsMary

An adjunction operation attaches:

◮ A modifier spine

◮ To some position of a head spine



Sister Adjunctions

Sister adjunctions are used to combine spines to form trees.

v

VP

S

n

NP

eatsMary d

the

n

NP

cake

An adjunction operation attaches:

◮ A modifier spine

◮ To some position of a head spine



Sister Adjunctions

Sister adjunctions are used to combine spines to form trees.

v

VP

S

n

NP

eatsMary d

the

n

NP

cake p

PP

with n

NP

almonds

An adjunction operation attaches:

◮ A modifier spine

◮ To some position of a head spine



Regular Adjunctions

We also consider a regular adjunction operation.

It adds one level to the syntactic constituent it attaches to.

n

NP

wp

WP

S’

v

VP

Sboys

who

play

d

the

r
NP

NP

d

the

n

boys

S’

WP

wp

who

S

VP

v

play

N.B.: This operation is simpler than adjunctions in classic TAG,
resulting in more efficient parsing costs.



Derivations in our TAG

A tree is a set with two types of elements:

spines

v

VP

S

eat

i

〈i, σ〉

i : word position
σ : a spine

adjunctions

v

VP

S

eat

m

h
n

NP

cake

〈h,m, σh, σm, POS, A〉

h m : head and modifier positions
σh σm : spines of h and m

POS : the attachment position
A : sister or regular



A TAG-style Linear Model

fa(x, 〈h,m, σh, σm, POS, A〉)

v

VP

S

n

NP

withboys eat a cakethe acakeeat

Parser(x) = argmaxy∈Y(x)

∑

〈i,σ〉∈S(y)

fs(x, 〈i, σ〉) ·w +

∑

〈h,m,...〉∈A(y)

fa(x, 〈h,m, . . .〉) · w



Outline

A TAG-style Linear Model for Constituent Parsing
Representation: Spines and Adjunctions
Model and Features

Fast Inference with our TAG

Parsing the WSJ Treebank



Parsing with the Eisner Algorithms

◮ Our TAG structures are a general form of dependency graph:
◮ Dependencies are adjunctions between spines
◮ Labels include the type and position of the adjunction

◮ Parsing can be done with the Eisner [1996,2000] algorithms
◮ Applies to splittable dependency representations

i.e., left and right modifiers are adjoined independently
◮ Words in the dependency graph can have senses,

like our spines
◮ Parsing time is O(n3G)

◮ Can be extended to include second-order features.



Second-Order Features in our TAG

We incorporate recent extensions to the Eisner algorithm:

siblings

v

VP

S

p

PP

boys

cake forkaa

eat withn

NP

O(n3G)
[Eisner 2000]

[McDonald & Pereira, 2006]

grandchildren

v

VP

S

p

PP

boys

cake forkaa

eat with n

NP

O(n4G)
[Carreras, 2007]



Exact Inference is Too Expensive

◮ Parsing time is at least O(n3G).
(it is O(n4G) in our final model)

◮ The constant G is polynomial in the number of possible spines
for any word, and the maximum height of any spine.
This is prohibitive for real parsing tasks (G > 5000).

◮ Solution: Coarse-to-fine inference
(e.g. [Charniak 97] [Charniak & Johnson 05] [Petrov & Klein 07])

◮ Use simple dependency parsing models to restrict the space of
possible structures of the full model.



A Coarse-to-fine Strategy for Fast Parsing

v

eat

v
k:1

eat

VP1:3

eat

VP
v

eat
eat

S

VP

µ(x, h, m, t) µH(x, h, m, tH) µP(x, h, m, tP) µM(x, h, m, tM)× ×=

NP
NP

cakecake

NP

cake
n

cake
cake

◮ First-order dependency models estimate conditional
distributions of simple dependencies

◮ We build a beam of most likely dependencies:
◮ Inside-Outside inference, in O(n3H) with H ∼ 50
◮ We can discard 99.6 of dependencies

and retain 98.5 of correct constituents

◮ The full model is constrained to the pruned space both at
training and testing



A TAG-style Linear Model: Summary

A simple TAG-style model, based in spines and adjunctions:

◮ It allows a wide variety of features

◮ It’s splittable, allowing efficient inference
◮ O(n3G) for CFG-style, head-modifier and sibling features
◮ O(n4G) for grandchildren dependency features

◮ The backbone dependency graph can be pruned with simple
first-order dependency models

Other TAG formalisms have more expensive parsing algorithms
[Chiang 2003] [Shen & Joshi 2005].



Outline

A TAG-style Linear Model for Constituent Parsing
Representation: Spines and Adjunctions
Model and Features

Fast Inference with our TAG

Parsing the WSJ Treebank



Parsing the WSJ Treebank

◮ Extraction of our TAG derivations from WSJ trees

◮ Straighforward process using the head rules of [Collins 1999]
◮ ∼300 spines, ∼20 spines/token

◮ Learning:
◮ Train first-order models using EG [Collins et al. 2008]

5 training passes, 5 hours per pass
◮ Train TAG-style full model using Avg. Perceptron

10 training passes, 12 hours per pass

◮ Parse test data and evaluate



Test results on WSJ data

Full Parsers precision recall F1

Charniak 2000 89.5 89.6 89.6
Petrov & Klein 2007 90.2 89.9 90.1

this work 91.4 90.7 91.1

Rerankers precision recall F1

Collins 2000 89.9 89.6 89.8
Charniak & Johnson 2005 · · 91.4

Huang 2008 · · 91.7



Evaluating Dependencies

◮ We look at the accuracy of recovering unlabeled dependencies

◮ We compare to state-of-the-art dependency parsing models
using the same features and learner :

training structures dependency accuracy

unlabeled dependencies (*) 92.0
labeled dependencies (*) 92.5
adjoined spines 93.5

(*) results from [Koo et al., ACL 2008]

constituent structure greatly helps parsing performance



Summary

A new efficient and expressive discriminative model for full
consituent parsing:

◮ Represents phrase structure with a TAG-style grammar

◮ Has rich features combining phrase structure and lexical heads
due to our spines being basic elements

◮ Parsing is efficient with the Eisner methods
due to the splittable nature of our adjunctions

A very effective method to prune dependency-based graphs:

key to discriminative training at full scale



Thanks!


	A TAG-style Linear Model for Constituent Parsing
	Representation: Spines and Adjunctions
	Model and Features

	Fast Inference with our TAG
	Parsing the WSJ Treebank

