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Discriminative Models for Parsing

Structured Prediction methods like CRF or Perceptron train linear
models defined on factored representations of structures:

Parse(x) = argmax
y∈Y(x)

∑

r∈y

f(x, r) ·w

Main Advantage:

◮ Flexibility of feature definitions in f(x, r)

Critical Difficulty:

◮ Training algorithms repeatedly parse the training sentences.
Efficient parsing algorithms are crucial.



A Feature-rich Consituent Parsing Model

We present a TAG-style model to recover constituent trees.

It defines feature vectors looking at:

◮ CFG-based structure

◮ Dependency relations between lexical heads

◮ Second-order dependency relations
with sibling and grandparent dependencies

These can be combined with surface features of the sentence.



Efficient Coarse-to-fine Inference

We use a coarse-to-fine parsing strategy on dependency graphs:

◮ We use general versions of the Eisner algorithm to parse with
the full TAG parser

◮ Simple first-order dependency models restrict the space of the
full model, making parsing feasible

We train a parser with discriminative methods at full-scale.



TAG + Dynamic Programming + Perceptron

We use the Averaged Perceptron to train the parameters of our
TAG model:

◮ w = 0, wa = 0

◮ For t = 1 . . . T

◮ For each training example (x, y)

1. z = Parse(x;w)
2. if y 6= z then

w = w + f(x, y) − f(x, z)
3. wa = wa + w

◮ return wa

We obtain state-of-the-art results for English.
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Tree-Adjoining Grammar (TAG)

◮ In TAG formalisms [Joshi et al. 1975]:
◮ The basic elements are trees
◮ Trees can be combined to form bigger trees

◮ There are many variations of TAG

◮ Here we present a simple TAG-style grammar:
◮ Allows rich features
◮ Allows efficient inference



Decomposing trees into spines and adjunctions
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Syntactic constituents sit on top of their lexical heads.
The underlying structure looks like a dependency structure.



Spines

Spines are lexical units with a chain of unary projections.

They are the elementary trees in our TAG.
(see also [Shen & Joshi 2005])
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We build a dictionary of spines appearing in the WSJ.



Sister Adjunctions

Sister adjunctions are used to combine spines to form trees.
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An adjunction operation attaches:

◮ A modifier spine

◮ To some position of a head spine



Sister Adjunctions

Sister adjunctions are used to combine spines to form trees.
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An adjunction operation attaches:

◮ A modifier spine

◮ To some position of a head spine



Sister Adjunctions

Sister adjunctions are used to combine spines to form trees.
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An adjunction operation attaches:

◮ A modifier spine

◮ To some position of a head spine



Regular Adjunctions

We also consider a regular adjunction operation.

It adds one level to the syntactic constituent it attaches to.
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N.B.: This operation is simpler than adjunctions in classic TAG,
resulting in more efficient parsing costs.



Derivations in our TAG

A tree is a set with two types of elements:

spines
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i : word position
σ : a spine

adjunctions
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〈h,m, σh, σm, POS, A〉

h m : head and modifier positions
σh σm : spines of h and m

POS : the attachment position
A : sister or regular



A TAG-style Linear Model

fa(x, 〈h,m, σh, σm, POS, A〉)
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Parser(x) = argmaxy∈Y(x)

∑

〈i,σ〉∈S(y)

fs(x, 〈i, σ〉) ·w +

∑

〈h,m,...〉∈A(y)

fa(x, 〈h,m, . . .〉) · w
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Parsing with the Eisner Algorithms

◮ Our TAG structures are a general form of dependency graph:
◮ Dependencies are adjunctions between spines
◮ Labels include the type and position of the adjunction

◮ Parsing can be done with the Eisner [1996,2000] algorithms
◮ Applies to splittable dependency representations

i.e., left and right modifiers are adjoined independently
◮ Words in the dependency graph can have senses,

like our spines
◮ Parsing time is O(n3G)

◮ Can be extended to include second-order features.



Second-Order Features in our TAG

We incorporate recent extensions to the Eisner algorithm:
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Exact Inference is Too Expensive

◮ Parsing time is at least O(n3G).
(it is O(n4G) in our final model)

◮ The constant G is polynomial in the number of possible spines
for any word, and the maximum height of any spine.
This is prohibitive for real parsing tasks (G > 5000).

◮ Solution: Coarse-to-fine inference
(e.g. [Charniak 97] [Charniak & Johnson 05] [Petrov & Klein 07])

◮ Use simple dependency parsing models to restrict the space of
possible structures of the full model.



A Coarse-to-fine Strategy for Fast Parsing
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◮ First-order dependency models estimate conditional
distributions of simple dependencies

◮ We build a beam of most likely dependencies:
◮ Inside-Outside inference, in O(n3H) with H ∼ 50
◮ We can discard 99.6 of dependencies

and retain 98.5 of correct constituents

◮ The full model is constrained to the pruned space both at
training and testing



A TAG-style Linear Model: Summary

A simple TAG-style model, based in spines and adjunctions:

◮ It allows a wide variety of features

◮ It’s splittable, allowing efficient inference
◮ O(n3G) for CFG-style, head-modifier and sibling features
◮ O(n4G) for grandchildren dependency features

◮ The backbone dependency graph can be pruned with simple
first-order dependency models

Other TAG formalisms have more expensive parsing algorithms
[Chiang 2003] [Shen & Joshi 2005].
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Parsing the WSJ Treebank

◮ Extraction of our TAG derivations from WSJ trees

◮ Straighforward process using the head rules of [Collins 1999]
◮ ∼300 spines, ∼20 spines/token

◮ Learning:
◮ Train first-order models using EG [Collins et al. 2008]

5 training passes, 5 hours per pass
◮ Train TAG-style full model using Avg. Perceptron

10 training passes, 12 hours per pass

◮ Parse test data and evaluate



Test results on WSJ data

Full Parsers precision recall F1

Charniak 2000 89.5 89.6 89.6
Petrov & Klein 2007 90.2 89.9 90.1

this work 91.4 90.7 91.1

Rerankers precision recall F1

Collins 2000 89.9 89.6 89.8
Charniak & Johnson 2005 · · 91.4

Huang 2008 · · 91.7



Evaluating Dependencies

◮ We look at the accuracy of recovering unlabeled dependencies

◮ We compare to state-of-the-art dependency parsing models
using the same features and learner :

training structures dependency accuracy

unlabeled dependencies (*) 92.0
labeled dependencies (*) 92.5
adjoined spines 93.5

(*) results from [Koo et al., ACL 2008]

constituent structure greatly helps parsing performance



Summary

A new efficient and expressive discriminative model for full
consituent parsing:

◮ Represents phrase structure with a TAG-style grammar

◮ Has rich features combining phrase structure and lexical heads
due to our spines being basic elements

◮ Parsing is efficient with the Eisner methods
due to the splittable nature of our adjunctions

A very effective method to prune dependency-based graphs:

key to discriminative training at full scale



Thanks!
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