Projective Dependency Parsing with Perceptron

Xavier Carreras, Mihai Surdeanu, and Lluís Màrquez

Technical University of Catalonia {carreras,surdeanu,lluism}@lsi.upc.edu

8th June 2006

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Introduction

Parsing and Learning

Parsing Model Parsing Algorithm Global Perceptron Learning Algorithm

(ロ) (同) (三) (三) (三) (○) (○)

Features

Introduction

Parsing and Learning

Parsing Model Parsing Algorithm Global Perceptron Learning Algorithm

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Features

Introduction

Motivation

- Blind treatment of multilingual data
- Use well-known components
- Our Dependency Parsing Learning Architecture:
 - Eisner dep-parsing algorithm, for projective structures

(日) (日) (日) (日) (日) (日) (日)

- Perceptron learning algorithm, run globally
- Features: state-of-the-art, with some new ones
- In CoNLL-X data, we achieve moderate performance:
 - 74.72 of overall labeled attachment score
 - 10th position in the ranking

Introduction

Parsing and Learning

Parsing Model Parsing Algorithm Global Perceptron Learning Algorithm

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Features

Parsing Model

- A dependency tree is decomposed into labeled dependencies, each of the form [h, m, l] where :
 - h is the position of the head word
 - m is the position of the modifier word
 - I is the label of the dependency
- Given a sentence x the parser computes:

dparser (x, \mathbf{w}) = arg max score (x, y, \mathbf{w}) $y \in \mathcal{Y}(x)$

$$= \operatorname{arg\,max}_{y \in \mathcal{Y}(x)} \sum_{[h,m,f] \in y} \operatorname{score}([h, m, f], x, y, \mathbf{w})$$
$$= \operatorname{arg\,max}_{y \in \mathcal{Y}(x)} \sum_{[h,m,f] \in y} \mathbf{w}' \cdot \phi([h, m], x, y)$$

w = (w¹,...,w^l,...,w^L) is the learned weight vector
 φ is the feature extraction function, given a priori

The Parsing Algorithm of Eisner (1996)

- Assumes that dependency structures are projective; in CoNLL data, this only holds for Chinese
- Bottom-up dynamic programming algorithm
- In a given span from word s to word e :
 - 1. Look for the optimal point giving internal structures:

2. Look for the best label to connect the structures:

・ コット (雪) (小田) (コット 日)

The Parsing Algorithm of Eisner (1996) (II)

 A third step assembles two dependency structures without using learning

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Perceptron Learning

- Global Perceptron (Collins 2002): trains the weight vector dependently of the parsing algorithm.
- A very simple online learning algorithm: it corrects the mistakes seen after a training sentence is parsed.

```
 \begin{split} \mathbf{w} &= \mathbf{0} \\ \text{for } t &= 1 \text{ to } T \\ \text{for each training example } (x, y) \text{ do} \\ \hat{y} &= \text{dparser}(x, \mathbf{w}) \\ \text{for each } [h, m, l] \in y \setminus \hat{y} \text{ do } /* \text{ missed deps }*/ \\ \mathbf{w}^{l} &= \mathbf{w}^{l} + \phi(h, m, x, \hat{y}) \\ \text{for each } [h, m, l] \in \hat{y} \setminus y \text{ do } /* \text{ over-predicted deps }*/ \\ \mathbf{w}^{l} &= \mathbf{w}^{l} - \phi(h, m, x, \hat{y}) \\ \text{return } \mathbf{w} \end{split}
```

(ロ) (同) (三) (三) (三) (三) (○) (○)

Introduction

Parsing and Learning

Parsing Model Parsing Algorithm Global Perceptron Learning Algorithm

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Features

Feature Extraction Function

 $\phi(h, m, x, y)$: represents in a feature vector a dependency from word positions *m* to *h*, in the context of a sentence *x* and a dependency tree *y*

$$\begin{split} \phi(h, m, x, y) &= \phi_{token}(x, h, "head") + \phi_{tctx}(x, h, "head") \\ &+ \phi_{token}(x, m, "mod") + \phi_{tctx}(x, m, "mod") \\ &+ \phi_{dep}(x, mM_{h,m}, d_{h,m}) + \phi_{dctx}(x, mM_{h,m}, d_{h,m}) \\ &+ \phi_{dist}(x, mM_{h,m}, d_{h,m}) + \phi_{runtime}(x, y, h, m, d_{h,m}) \end{split}$$

where

- $mM_{h,m}$ is a shorthand for the tuple $\langle \min(h, m), \max(h, m) \rangle$
- *d_{h,m}* indicates the direction of the dependency

Context-Independent Token Features

- Represent a token i
- type indicates the type of token being represented, i.e. "head" or "mod"
- Novel features are in red.

$\phi_{token}(x,i,type)$					
$type \cdot word(x_i)$					
$type \cdot \text{lemma}(x_i)$					
$type \cdot cpos(x_i)$					
$type \cdot fpos(x_i)$					
foreach $f \in \text{morphosynt}(x_i)$: $type \cdot f$					
$type \cdot word(x_i) \cdot cpos(x_i)$					
for each $f \in \operatorname{morphosynt}(x_i)$: $type \cdot \operatorname{word}(x_i) \cdot f$					

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Context-Dependent Token Features

- Represent the context of a token x_i
- The function extracts token features of surrounding tokens
- It also conjoins some selected features along the window

(日) (日) (日) (日) (日) (日) (日)

Context-Independent Dependency Features

- Features of the two tokens involved in a dependency relation
- dir indicates whether the relation is left-to-right or right-to-left

$\phi_{ extsf{dep}}(extsf{x}, extsf{i}, extsf{j}, extsf{dir})$				
$dir \cdot word(x_i) \cdot cpos(x_i) \cdot word(x_j) \cdot cpos(x_j)$				
$dir \cdot cpos(x_i) \cdot word(x_j) \cdot cpos(x_j)$				
$dir \cdot word(x_i) \cdot word(x_j) \cdot cpos(x_j)$				
$dir \cdot word(x_i) \cdot cpos(x_i) \cdot cpos(x_j)$				
$dir \cdot word(x_i) \cdot cpos(x_i) \cdot word(x_j)$				
$dir \cdot word(x_i) \cdot word(x_j)$				
$dir \cdot cpos(x_i) \cdot cpos(x_j)$				

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Context-Dependent Dependency Features

- Capture the context of the two tokens involved in a relation
- dir indicates whether the relation is left-to-right or right-to-left

$\phi_{dctx}(\mathbf{x}, \mathbf{i}, \mathbf{j}, dir)$				
$dir \cdot cpos(x_i) \cdot cpos(x_{i+1}) \cdot cpos(x_{j-1}) \cdot cpos(x_j)$				
$dir \cdot cpos(x_{i-1}) \cdot cpos(x_i) \cdot cpos(x_{j-1}) \cdot cpos(x_j)$				
$dir \cdot cpos(x_i) \cdot cpos(x_{i+1}) \cdot cpos(x_i) \cdot cpos(x_{i+1})$				
$dir \cdot cpos(x_{i-1}) \cdot cpos(x_i) \cdot cpos(x_j) \cdot cpos(x_{j+1})$				

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Surface Distance Features

- Features on the surface tokens found within a dependency relation
- Numeric features are discretized using "binning" to a small number of intervals

$\phi_{dist}(\mathbf{x},\mathbf{i},\mathbf{j},dir)$					
foreach(k \in (<i>i</i> , <i>j</i>)): <i>dir</i> \cdot cpos(x_i) \cdot cpos(x_k) \cdot cpos(x_j)					
number of tokens between <i>i</i> and <i>j</i>					
number of verbs between <i>i</i> and <i>j</i>					
number of coordinations between <i>i</i> and <i>j</i>					
number of punctuations signs between <i>i</i> and <i>j</i>					

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Runtime Features

- Capture the labels of the dependencies that attach to the head word
- This information is available in the dynamic programming matrix of the parsing algorithm

 $\begin{array}{c} \phi_{\text{runtime}}(\mathbf{x},\mathbf{y},\mathbf{h},\mathbf{m},\text{dir}) \\ \hline \text{foreach } i,\ 1 \le i \le S : dir \cdot \operatorname{cpos}(x_h) \cdot \operatorname{cpos}(x_m) \cdot l_i \\ dir \cdot \operatorname{cpos}(x_h) \cdot \operatorname{cpos}(x_m) \cdot l_1 \\ dir \cdot \operatorname{cpos}(x_h) \cdot \operatorname{cpos}(x_m) \cdot l_1 \cdot l_2 \\ dir \cdot \operatorname{cpos}(x_h) \cdot \operatorname{cpos}(x_m) \cdot l_1 \cdot l_2 \cdot l_3 \\ dir \cdot \operatorname{cpos}(x_h) \cdot \operatorname{cpos}(x_m) \cdot l_1 \cdot l_2 \cdot l_3 \cdot l_4 \end{array}$

Introduction

Parsing and Learning

Parsing Model Parsing Algorithm Global Perceptron Learning Algorithm

Features

Results

	GOLD	UAS	LAS
Japanese	99.16	90.79	88.13
Chinese	100.0	88.65	83.68
Portuguese	98.54	87.76	83.37
Bulgarian	99.56	88.81	83.30
German	98.84	85.90	82.41
Danish	99.18	85.67	79.74
Swedish	99.64	85.54	78.65
Spanish	99.96	80.77	77.16
Czech	97.78	77.44	68.82
Slovene	98.38	77.72	68.43
Dutch	94.56	71.39	67.25
Arabic	99.76	72.65	60.94
Turkish	98.41	70.05	58.06
Overall	98.68	81.19	74.72

Feature Analysis

	$\phi_{ extsf{token}}$	$+\phi_{\mathrm{dep}}$	$+\phi_{\mathrm{tctx}}$	$+\phi_{ m dist}$	$+\phi$ runtime
			$+\phi_{\mathrm{dctx}}$		
Japanese	38.78	78.13	86.87	88.27	88.13
Portuguese	47.10	64.74	80.89	82.89	83.37
Spanish	12.80	53.80	68.18	74.27	77.16
Turkish	33.02	48.00	55.33	57.16	58.06

This table shows LAS at increasing feature configurations

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

All families of feature patterns help significantly

Errors Caused by 4 Factors

- 1. Size of training sets: accuracy below 70% for languages with small training sets: Turkish, Arabic, and Slovene.
- 2. Modeling large distance dependencies: our distance features (ϕ_{dist}) are insufficient to model well large-distance dependencies:

	to root	1	2	3 – 6	>=7
Spanish	83.04	93.44	86.46	69.97	61.48
Portuguese	90.81	96.49	90.79	74.76	69.01

- 3. Modeling context: our context features (ϕ_{dctx} , ϕ_{tctx} , and $\phi_{runtime}$) do not capture complex dependencies. Top 5 focus words with most errors:
 - Spanish: "y", "de", "a", "en", and "que"
 - Portuguese: "em", "de", "a", "e", and "para"
- Projectivity assumption: Dutch is the language with most crossing dependencies in this evaluation, and the accuracy we obtain is below 70%.

Thanks!