
Projective Dependency Parsing with
Perceptron

Xavier Carreras, Mihai Surdeanu, and Lluís Màrquez

Technical University of Catalonia
{carreras,surdeanu,lluism}@lsi.upc.edu

8th June 2006



Outline

Introduction

Parsing and Learning
Parsing Model
Parsing Algorithm
Global Perceptron Learning Algorithm

Features

Experiments and Results
Results
Discussion



Outline

Introduction

Parsing and Learning
Parsing Model
Parsing Algorithm
Global Perceptron Learning Algorithm

Features

Experiments and Results
Results
Discussion



Introduction

I Motivation
I Blind treatment of multilingual data
I Use well-known components

I Our Dependency Parsing Learning Architecture:
I Eisner dep-parsing algorithm, for projective structures
I Perceptron learning algorithm, run globally
I Features: state-of-the-art, with some new ones

I In CoNLL-X data, we achieve moderate performance:
I 74.72 of overall labeled attachment score
I 10th position in the ranking



Outline

Introduction

Parsing and Learning
Parsing Model
Parsing Algorithm
Global Perceptron Learning Algorithm

Features

Experiments and Results
Results
Discussion



Parsing Model

I A dependency tree is decomposed into labeled
dependencies, each of the form [h, m, l] where :

I h is the position of the head word
I m is the position of the modifier word
I l is the label of the dependency

I Given a sentence x the parser computes:
dparser(x , w) = arg max

y∈Y(x)

score(x , y , w)

= arg max
y∈Y(x)

∑
[h,m,l]∈y

score([h, m, l], x , y , w)

= arg max
y∈Y(x)

∑
[h,m,l]∈y

w l · φ([h, m], x , y)

I w = (w1, . . . , w l , . . . , wL) is the learned weight vector
I φ is the feature extraction function, given a priori



The Parsing Algorithm of Eisner (1996)

I Assumes that dependency structures are projective;
in CoNLL data, this only holds for Chinese

I Bottom-up dynamic programming algorithm
I In a given span from word s to word e :

1. Look for the optimal point giving internal structures:

es r r+1

2. Look for the best label to connect the structures:

?

?



The Parsing Algorithm of Eisner (1996) (II)

I A third step assembles two dependency structures without
using learning

e

s r er

s r



Perceptron Learning

I Global Perceptron (Collins 2002): trains the weight vector
dependently of the parsing algorithm.

I A very simple online learning algorithm: it corrects the
mistakes seen after a training sentence is parsed.

w = 0
for t = 1 to T

foreach training example (x , y) do
ŷ = dparser(x , w)
foreach [h, m, l] ∈ y \ŷ do /* missed deps */

w l = w l + φ(h, m, x , ŷ)

foreach [h, m, l] ∈ ŷ \y do /* over-predicted deps */
w l = w l − φ(h, m, x , ŷ)

return w



Outline

Introduction

Parsing and Learning
Parsing Model
Parsing Algorithm
Global Perceptron Learning Algorithm

Features

Experiments and Results
Results
Discussion



Feature Extraction Function

φ(h, m, x , y): represents in a feature vector a dependency from
word positions m to h, in the context of a sentence x and a
dependency tree y

φ(h, m, x , y) = φtoken(x , h, “head”) + φtctx(x , h, “head”)

+ φtoken(x , m, “mod”) + φtctx(x , m, “mod”)

+ φdep(x , mMh,m, dh,m) + φdctx(x , mMh,m, dh,m)

+ φdist(x , mMh,m, dh,m) + φruntime(x , y , h, m, dh,m)

where
I mMh,m is a shorthand for the tuple 〈min(h, m), max(h, m)〉
I dh,m indicates the direction of the dependency



Context-Independent Token Features

I Represent a token i
I type indicates the type of token being represented, i.e.

“head” or “mod”
I Novel features are in red.

φtoken (x, i, type )
type · word(xi)

type · lemma(xi)
type · cpos(xi)
type · fpos(xi)

foreach f ∈ morphosynt(xi) : type · f
type · word(xi) · cpos(xi)

foreach f ∈ morphosynt(xi) : type · word(xi) · f



Context-Dependent Token Features

I Represent the context of a token xi

I The function extracts token features of surrounding tokens
I It also conjoins some selected features along the window

φtctx (x, i, type )
φtoken(x , i − 1, type · string(−1))
φtoken(x , i − 2, type · string(−2))
φtoken(x , i + 1, type · string(−1))
φtoken(x , i + 2, type · string(−2))

type · cpos(xi) · cpos(xi−1)
type · cpos(xi) · cpos(xi−1) · cpos(xi−2)

type · cpos(xi) · cpos(xi+1)
type · cpos(xi) · cpos(xi+1) · cpos(xi+2)



Context-Independent Dependency Features

I Features of the two tokens involved in a dependency
relation

I dir indicates whether the relation is left-to-right or
right-to-left

φdep (x, i, j, dir )
dir · word(xi) · cpos(xi) · word(xj) · cpos(xj)

dir · cpos(xi) · word(xj) · cpos(xj)
dir · word(xi) · word(xj) · cpos(xj)
dir · word(xi) · cpos(xi) · cpos(xj)
dir · word(xi) · cpos(xi) · word(xj)

dir · word(xi) · word(xj)
dir · cpos(xi) · cpos(xj)



Context-Dependent Dependency Features

I Capture the context of the two tokens involved in a relation
I dir indicates whether the relation is left-to-right or

right-to-left

φdctx (x, i, j, dir )
dir · cpos(xi) · cpos(xi+1) · cpos(xj−1) · cpos(xj)
dir · cpos(xi−1) · cpos(xi) · cpos(xj−1) · cpos(xj)
dir · cpos(xi) · cpos(xi+1) · cpos(xj) · cpos(xj+1)
dir · cpos(xi−1) · cpos(xi) · cpos(xj) · cpos(xj+1)



Surface Distance Features

I Features on the surface tokens found within a dependency
relation

I Numeric features are discretized using “binning” to a small
number of intervals

φdist (x, i, j, dir )
foreach(k ∈ (i , j)): dir · cpos(xi) · cpos(xk ) · cpos(xj)

number of tokens between i and j
number of verbs between i and j

number of coordinations between i and j
number of punctuations signs between i and j



Runtime Features

I Capture the labels of the dependencies that attach to the
head word

I This information is available in the dynamic programming
matrix of the parsing algorithm

S

h m
?

l l
l

1
2

3

...

l

φruntime (x, y, h, m, dir )
foreach i , 1≤ i≤S : dir · cpos(xh) · cpos(xm) · li
dir · cpos(xh) · cpos(xm) · l1
dir · cpos(xh) · cpos(xm) · l1 · l2
dir · cpos(xh) · cpos(xm) · l1 · l2 · l3
dir · cpos(xh) · cpos(xm) · l1 · l2 · l3 · l4



Outline

Introduction

Parsing and Learning
Parsing Model
Parsing Algorithm
Global Perceptron Learning Algorithm

Features

Experiments and Results
Results
Discussion



Results

GOLD UAS LAS
Japanese 99.16 90.79 88.13
Chinese 100.0 88.65 83.68
Portuguese 98.54 87.76 83.37
Bulgarian 99.56 88.81 83.30
German 98.84 85.90 82.41
Danish 99.18 85.67 79.74
Swedish 99.64 85.54 78.65
Spanish 99.96 80.77 77.16
Czech 97.78 77.44 68.82
Slovene 98.38 77.72 68.43
Dutch 94.56 71.39 67.25
Arabic 99.76 72.65 60.94
Turkish 98.41 70.05 58.06
Overall 98.68 81.19 74.72



Feature Analysis

φtoken +φdep +φtctx +φdist +φruntime
+φdctx

Japanese 38.78 78.13 86.87 88.27 88.13
Portuguese 47.10 64.74 80.89 82.89 83.37
Spanish 12.80 53.80 68.18 74.27 77.16
Turkish 33.02 48.00 55.33 57.16 58.06

I This table shows LAS at increasing feature configurations
I All families of feature patterns help significantly



Errors Caused by 4 Factors

1. Size of training sets: accuracy below 70% for languages
with small training sets: Turkish, Arabic, and Slovene.

2. Modeling large distance dependencies: our distance
features (φdist ) are insufficient to model well large-distance
dependencies:

to root 1 2 3 − 6 >= 7
Spanish 83.04 93.44 86.46 69.97 61.48
Portuguese 90.81 96.49 90.79 74.76 69.01

3. Modeling context: our context features (φdctx , φtctx , and
φruntime) do not capture complex dependencies. Top 5
focus words with most errors:

I Spanish: “y”, “de”, “a”, “en”, and “que”
I Portuguese: “em”, “de”, “a”, “e”, and “para”

4. Projectivity assumption: Dutch is the language with most
crossing dependencies in this evaluation, and the accuracy
we obtain is below 70%.



Thanks!


	Introduction
	Parsing and Learning
	Parsing Model
	Parsing Algorithm
	Global Perceptron Learning Algorithm

	Features
	Experiments and Results
	Results
	Discussion


