
Neurocomputing 57 (2004) 313–344
www.elsevier.com/locate/neucom

Margin maximization with feed-forward neural
networks: a comparative study with

SVM and AdaBoost

Enrique Romero∗ , Llu12s M3arquez , Xavier Carreras
Departament de Llenguatges i Sistemes Inform�atics, Universitat Polit�ecnica de Catalunya,

Campus Nord, C6-210, Barcelona 08034, Spain

Received 30 April 2003; accepted 7 October 2003

Abstract

Feed-forward Neural Networks (FNN) and Support Vector Machines (SVM) are two machine
learning frameworks developed from very di:erent starting points of view. In this work a new
learning model for FNN is proposed such that, in the linearly separable case, it tends to obtain
the same solution as SVM. The key idea of the model is a weighting of the sum-of-squares
error function, which is inspired by the AdaBoost algorithm. As in SVM, the hardness of the
margin can be controlled, so that this model can be also used for the non-linearly separable
case. In addition, it is not restricted to the use of kernel functions, and it allows to deal with
multiclass and multilabel problems as FNN usually do. Finally, it is independent of the particular
algorithm used to minimize the error function. Theoretic and experimental results on synthetic and
real-world problems are shown to con=rm these claims. Several empirical comparisons among
this new model, SVM, and AdaBoost have been made in order to study the agreement between
the predictions made by the respective classi=ers. Additionally, the results obtained show that
similar performance does not imply similar predictions, suggesting that di:erent models can be
combined leading to better performance.
c© 2003 Elsevier B.V. All rights reserved.

Keywords: Margin maximization; Feed-forward Neural Networks; Support Vector Machines; AdaBoost;
NLP classi=cation problems

∗ Corresponding author. Tel.: +34-934015613; fax: +34-934017014.
E-mail addresses: eromero@lsi.upc.es (E. Romero), lluism@lsi.upc.es (L. M3arquez), carreras@lsi.upc.es

(X. Carreras).

0925-2312/$ - see front matter c© 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.neucom.2003.10.011

mailto:eromero@lsi.upc.es
mailto:lluism@lsi.upc.es
mailto:carreras@lsi.upc.es

314 E. Romero et al. / Neurocomputing 57 (2004) 313–344

1. Introduction

Feed-forward Neural Networks (FNN) and Support Vector Machines (SVM) are two
alternative machine learning frameworks for approaching classi=cation and regression
problems developed from very di:erent starting point of view. The minimization of
the sum-of-squares (or cross-entropy) error function performed by FNN and the maxi-
mization of the margin by SVM lead to a di:erent inductive bias with very interesting
properties [1,6].

This work is focused on classi=cation tasks. Its main contribution is to propose a new
learning model for FNN that, in the linearly separable case, tends to obtain the same
solution as SVM. Looking at the similarities and di:erences between FNN and SVM,
it can be observed that the main di:erence between the sum-of-squares minimization
problem of an FNN and the margin maximization problem of an SVM (1-Norm Soft
Margin) lies on the constraints related to the objective function. Since these constraints
are responsible for the existence of the support vectors, their behavior will give the key
to propose the new learning model. Aiming to obtain support vectors, a weighting of the
sum-of-squares error function is proposed. This weighting function is inspired by the
AdaBoost algorithm [12], and it consists of modifying the contribution of every point
to the total error depending on its margin. In the linearly separable case, the hyper-
plane that maximizes the normalized margin also minimizes asymptotically the weighted
sum-of-squares error function proposed. The hardness of the margin can be controlled,
as in SVM, so that this model can be used for the non-linearly separable case as well.

The classical FNN architecture of the new proposed scheme presents some advan-
tages. The =nal solution is neither restricted to have an architecture with as many
hidden units as examples in the data set (or any subset of them) nor to use kernel
functions. The weights in the =rst layer are not restricted to be a subset of the data set.
In addition, it allows to deal with multiclass and multilabel problems as FNN usually
do. This is a non-trivial problem for SVM, since they are initially designed for binary
classi=cation problems. Finally, it is independent of the particular algorithm used to
minimize the error function.

Both theoretic and experimental results are shown to con=rm these claims. Several
experiments have been conducted on synthetic and two real-world problems from the
Natural Language Processing domain, namely Word Sense Disambiguation and Text
Categorization. Several comparisons among the new proposed model, SVM, and Ad-
aBoost have been made in order to see the agreement of the predictions made by the
respective classi=ers. Additionally, the evidence that there exist important di:erences
in the predictions of several models with good performance suggests that they can be
combined in order to obtain better results than every individual model. This idea has
been experimentally con=rmed in the Text Categorization domain.

The overall organization of the paper is as follows. Some preliminaries about FNN,
SVM, and AdaBoost can be found in Section 2. In Section 3, the similarities and
di:erences between FNN and SVM are discussed. Section 4 is devoted to describe
the new learning model and some theoretic results. The whole experimental work is
described in Sections 5–7. Finally, Section 8 concludes and outlines some directions
for further research.

E. Romero et al. / Neurocomputing 57 (2004) 313–344 315

2. Preliminaries

To =x notation, consider the classi=cation task given by a data set (the training
set) X = {(x1; y1); : : : ; (xL; yL)}, where each instance xi belongs to an input space
X; yi ∈{−1;+1}C , and C is the number of classes. 1 Without distinction, we will
refer to the elements of X as instances, points, examples, or vectors. A point xi be-
longs to a class c when the cth component of yi (the target value) is +1. The learning
algorithm trained on the data set outputs a function or classi=er f :X → RC , where
the sign of every component of f(x) is interpreted as the membership of x∈X to
every class. The magnitude of every component of f(x) is interpreted as a measure of
con=dence in the prediction. Usually, X = RN .

2.1. Feed-forward Neural Networks (FNN)

The well-known architecture of an FNN is structured by layers of units, with con-
nections between units from di:erent layers in forward direction [1]. A fully connected
FNN with one output unit and one hidden layer of Nh units computes the function:

fFNN(x) = ’0

(
Nh∑
i=1

�i’i(!i; bi; x) + b0

)
; (1)

where �i; bi; b0 ∈R and x; !i ∈RN . For convenience, we will divide the weights into
coe5cients (�i)

Nh
i=1, frequencies (!i)

Nh
i=1 and biases (bi)

Nh
i=0. The most common acti-

vation functions ’i(!; b; x) in the hidden units are sigmoidal for Multi-layer Percep-
trons (MLP) and radially symmetric for Radial Basis Function Networks (RBFN),
although many other functions may be used [19,24]. Output activation functions ’0(u)
are usually sigmoidal or linear.

The goal of the training process is to choose adequate parameters (coeLcients, fre-
quencies and biases) to minimize a predetermined cost function. The sum-of-squares
error function is the most usual:

E(X) =
L∑

i=1

1
2
(fFNN(xi)− yi)2: (2)

As it is well known, the sum-of-squares error function E(X) is an approximation to the
squared norm of the error function fFNN(x)− y(x) in the Hilbert space L2 of squared
integrable functions, where the integral is de=ned with regard to the probability measure
of the problem represented by X . For C-class problems, architectures with C output
units are used [1], and the objective is recast to minimize

EC(X) =
L∑

i=1

C∑
c=1

1
2
(fc

FNN(xi)− yc
i)

2; (3)

1 For 2-class problems, usually yi ∈{−1;+1}.

316 E. Romero et al. / Neurocomputing 57 (2004) 313–344

where fc
FNN is the cth component of the output function. The architecture of the network

(i.e. connections, number of hidden units and activation functions) is usually =xed in
advance, whereas the weights are learned during the training process. Note that the
appearance of the output function given by (1) is determined by the architecture of
the FNN model.

2.2. Support Vector Machines (SVM)

According to [6,37], SVM can be described as follows: the input vectors are mapped
into a (usually high-dimensional) inner product space through some non-linear mapping
�, chosen a priori. In this space (the feature space), an optimal hyperplane is con-
structed. By using a kernel function K(u; v) the mapping can be implicit, since the inner
product de=ning the hyperplane can be evaluated as 〈�(u); �(v)〉=K(u; v) for every two
vectors u; v∈RN . In the SVM framework, an optimal hyperplane means a hyperplane
with maximal normalized margin with respect to the data set. The (functional) margin
of a point (xi; yi) with respect to a function f is de=ned as mrg(xi; yi; f) = yif(xi).
The margin of a function f with respect to a data set X is the minimum of the mar-
gins of the points in the data set. If f is a hyperplane, the normalized (or geometric)
margin is de=ned as the margin divided by the norm of the orthogonal vector to the
hyperplane. Thus, the absolute value of the geometric margin is the distance to the hy-
perplane. Using Lagrangian and Kuhn-Tucker theory, the maximal margin hyperplane
for a binary classi=cation problem given by X has the form:

fSVM(x) =
L∑

i=1

yi�iK(xi; x) + b; (4)

where the vector (�i)Li=1 is the (1-Norm Soft Margin) solution of the following con-
strained optimization problem in the dual space:

Maximize W (X) =−1
2

L∑
i; j=1

yi�iyj�jK(xi; xj) +
L∑

i=1

�i

subject to
L∑

i=1

yi�i = 0 (bias constraint);

06 �i6C; i = 1; : : : ; L:

(5)

In many implementations b is treated apart (=xed a priori, for example) in order to
avoid the bias constraint. A point is well classi=ed if and only if its margin with respect
to fSVM is positive. The points xi with �i ¿ 0 (active constraints) are support vectors.
Bounded support vectors have �i = C. Regarding their margin value, non-bounded
support vectors have margin 1, while bounded support vectors have margin less than
1. The parameter C allows to control the trade-o: between the margin and the number
of training errors. By setting C=∞, one obtains the hard margin hyperplane. The cost
function −W (X) is (plus a constant) the squared norm of the error function fSVM(x)−
y(x) in the Reproducing Kernel Hilbert Space associated to K(u; v) [6, p. 41]. The
most usual kernel functions K(u; v) are polynomial, Gaussian-like or some particular

E. Romero et al. / Neurocomputing 57 (2004) 313–344 317

sigmoids. In contrast to FNN, note that the form of the solution is a consequence of
the way the problem is solved.

2.3. AdaBoost

The purpose of AdaBoost is to =nd a highly accurate classi=cation rule by combining
many weak classi;ers (or weak hypotheses), each of which may be only moderately
accurate [12,30]. The weak hypotheses are learned sequentially, one at a time. Concep-
tually, at each iteration the weak hypothesis is biased to classify the examples which
were most diLcult to classify by the preceding weak hypotheses. After a certain num-
ber of iterations, the resulting weak hypotheses are linearly combined into a single rule
called the combined hypothesis.

The generalized AdaBoost algorithm for binary classi=cation [30] maintains a vector
of weights as a distribution Dt over examples. At round t, the goal of the weak learner
algorithm is to =nd a weak hypothesis ht :X → R with moderately low error with
respect to the weights Dt . In this setting, weak hypotheses ht(x) make real-valued
con=dence-rated predictions. Initially, the distribution D1 is uniform, but after each
iteration, the boosting algorithm increases (or decreases) the weights Dt(i) for which
ht(xi) makes a bad (or good) prediction, with a variation proportional to the con=dence
|ht(xi)|. The =nal hypothesis, fT :X → R, computes its predictions using a weighted
vote of the weak hypotheses fT (x)=

∑T
j=1 �jhj(x). The concrete weight updating rule

can be expressed as

Dt+1(i) =
Dt(i) · e−�tyiht(xi)

Zt

=
e−

∑t
j=1 �jyihj(xi)

L ·∏t
j=1 Zj

=
e−yift(xi)

L ·∏t
j=1 Zj

=
e−mrg(xi ;yi ;ft)

L ·∏t
j=1 Zj

: (6)

Schapire and Singer [30] prove that the training error of the AdaBoost algorithm expo-
nentially decreases with the normalization factor Zt computed at round t. This property
is used in guiding the design of the weak learner, which attempts to =nd a weak hy-
pothesis ht that minimizes Zt =

∑L
i=1 Dt(i) · exp(−�tyiht(xi)). In the same work the

calculation of weak hypotheses is derived, which are domain partitioning rules with
real-valued predictions. In its simplest form it leads to the construction of decision
stumps, but it also can be seen as a natural splitting criterion used for performing
decision-tree induction.

From (6) and the previous expression of Zt , it can be said that AdaBoost is a
stage-wise procedure for minimizing a certain error function which depends on the func-
tional margin −mrg(xi; yi; f). In particular, AdaBoost is trying to minimize∑

i exp
(−yi

∑
t �tht(xi)

)
, which is the negative exponential of the margin of the com-

bined classi=er. The learning bias of AdaBoost is proven to be very aggressive at
maximizing the margin of the training examples and this makes a clear connection to
the SVM learning paradigm [30]. More details about the relation between AdaBoost
and SVM can be found in [26].

318 E. Romero et al. / Neurocomputing 57 (2004) 313–344

3. A Comparison between FNN and SVM

In this section, a comparison between FNN and SVM is performed. After comparing
the respective output and cost functions, it can be observed that the main di:erence
lies on the presence or absence of constraints in the optimization problem.

3.1. Comparing the output functions

As pointed out elsewhere (see, for example, [38]), the output function (4) of an
SVM can be expressed with a fully connected FNN with one output unit and one
hidden layer of units (1) with the following identi=cations:

• Number of hidden units: L (the number of examples in X),
• Coe5cients: �i = yi�i,
• Frequencies: !i = xi,
• Biases: every bi vanishes, and b0 = b,
• Activation functions:
◦ Hidden layer: ’i(xi; bi; x) = K(xi; x).
◦ Output layer: ’0 linear.

As in SVM, the only parameters to be learned in such an FNN would be the coeLcients
and the biases. Thus, the main di:erences between FNN and SVM rely both on the
cost function to be optimized and the constraints, since speci=c learning algorithms are
a consequence of the optimization problem to be solved.

3.2. Comparing the cost functions

The =rst observation has to do with the similarities between the respective cost func-
tions. De=ning KL=(K(xi; xj))Li; j=1; y=(y1; : : : ; yL)T; y�=(y1�1; : : : ; yL�L)T, neglecting
the bias term b, and considering the identi=cations stated in Section 3.1, we have that
fFNN(xj), which is equal to fSVM(xj), is the jth row of the vector y�T ·KL. Therefore,
we can express the respective cost functions (2) and (5) on the data set X as

E(X) =
L∑

i=1

1
2
fFNN(xi)2 −

L∑
i=1

yifFNN(xi) +
L∑

i=1

1
2
y2
i

=
1
2
y�T · KL · KL · y�− y�T · KL · y +

1
2
L;

W (X) =−1
2
y�T · KL · y�+ y�T · y:

Regardless of their apparent similarity, we wonder whether there is any direct rela-
tionship between the minima of E(X) and the maxima of W (X)—or, equivalently, the
minima of −W (X). The next result partially answers this question.

E. Romero et al. / Neurocomputing 57 (2004) 313–344 319

Proposition 1. Consider the identi;cations in Section 3.1 without the bias term b. If
KL is non-singular, then the respective cost functions E(X) and −W (X) attain their
unique minimum (without constraints) at the same point

(y1�∗1 ; : : : ; yL�∗L)
T = K−1

L (y1; : : : ; yL)T:

Proof. As E(X) and −W (X) are convex functions, a necessary and suLcient condition
for y�∗ to be a global minimum is that their derivative with respect to y� vanishes:

@E(X)
@y�

= KL · KL · y�− KL · y = 0;

−@W (X)
@y�

= KL · y�− y = 0:

Since KL is non-singular, both equations have the same solution.

If KL is singular, there will be more than one point where the optimum value is
attained, but all of them are equivalent. In addition, KL has rows which are linearly
dependent among them. This fact indicates that the information provided (via the inner
product) by a point in the data set is redundant, since it is a linear combination of the
information provided by other points. If the bias b is =xed a priori, the same result
holds.

4. An FNN that maximizes the margin

The optima of E(X) and W (X) can be very di:erent depending on the absence or
presence of the constraints. In this section, we explore the e:ect of the constraints in
the solution obtained by the SVM approach. Since these constraints are responsible
for the existence of the support vectors, their behavior will give the key to propose a
weighting of the sum-of-squares error function, inspired by the AdaBoost algorithm.

4.1. Contribution of every point to the cost function

The existence of linear constraints in the optimization problem to be solved in SVM
has a very important consequence: only some of the �i will be di:erent from zero.
These coeLcients are associated with the so-called support vectors. Thus, the remain-
ing vectors can be omitted, both to optimize W (X) and to compute output (4). The
problem is that we do not know them in advance. In the linearly separable case, with
hard margin solutions, support vectors have margin 1 (i.e., fSVM(xi) = yi), while the
remaining points (that will be referred to as superclassi;ed points) have a margin
strictly greater than 1. By linearly separable we mean “linearly separable in a certain
space”, either in the input space or in the feature space.

In contrast, for FNN minimizing the sum-of-squares error function, every point makes
a certain contribution to the total error. The greater is the squared error, the greater will
be the contribution, independently of whether the point is well or wrongly classi=ed.

320 E. Romero et al. / Neurocomputing 57 (2004) 313–344

With linear output units, there may be points (very) well classi=ed with a (very)
large squared error. Superclassi=ed points are a clear example of this type. Sigmoidal
output units can help to solve this problem, but they can also create new ones (in the
linearly separable case, for example, the solution is not bounded). An alternative idea
to sigmoidal output units could be to reduce the contribution of superclassi=ed points
and reinforce those of misclassi=ed points, as explained in the next section.

4.2. Weighting the contribution

Unfortunately, we do not know in advance which points will be =nally superclassi=ed
or misclassi=ed. But during the FNN learning process it is possible to treat every
point in a di:erent way depending on its error (or, equivalently, its margin). In order
to simulate the behavior of an SVM, the learning process could be guided by the
following heuristics:

• Any well classi=ed point contributes less to the error than any misclassi=ed point.
• Among well classi=ed points, the contribution is larger for smaller errors in absolute

value (or, equivalently, smaller margins).
• Among misclassi=ed points, the contribution is larger for larger errors in absolute

value (or, equivalently, smaller margins).

These guidelines reinforce the contribution of misclassi=ed points and reduces the con-
tribution of well classi=ed ones. As can be seen, this is exactly the same idea as
distribution (6) for AdaBoost. Similarly, the contribution of every point to the error
can be modi=ed simply by weighting it individually as a function of the margin with
respect to the output function fFNN(x). In order to allow more Sexibility to the model,
two parameters �+; �−¿ 0 can be introduced into the weighting function as follows:

D(xi; yi; �+; �−) =

e−|mrg|�+ if mrg¿ 0;

e+|mrg|�− if mrg¡ 0 and �− = 0;

1 otherwise;

(7)

where the margin mrg=mrg(xi; yi; fFNN)=yifFNN(xi). There are (at least) two di:erent
ways of obtaining the behavior previously described:

• Weighting the sum-of-squares error:

Ep =
1
2
(fFNN(xi)− yi)2 · D(xi; yi; �+; �−); (8)

• Weighting the sum-of-squares error derivative (when the derivative is involved in
the learning process):

Ep such that
@Ep

@fFNN
= (fFNN(xi)− yi) · D(xi; yi; �+; �−); (9)

where Ep = Ep(fFNN(xi); yi; �+; �−). Graphically, the right branch of the squared
error parabola is bended to a horizontal asymptote, as shown in Fig. 1. Weighting the

E. Romero et al. / Neurocomputing 57 (2004) 313–344 321

Fig. 1. Individual error Ep for the weighted sum-of-squares error (8) (left) and the weighted sum-of-squares
error derivative (9) (right) for �+ = 1; 2 (�− is =xed to 0). The target value is +1 and the X -axis indicates
the output function.

sum-of-squares error derivative also implies a kind of weighting the sum-of-squares
error, although in a slightly di:erent way. 2

The following result justi=es that the previously suggested weighted error functions
(8) and (9) are well founded. In addition, it allows to construct new error functions
with the same underlying ideas.

Theorem 1. Let f∈R; y∈{−1;+1}; �+; �−¿ 0, and Ep(f; y; �+; �−) an error func-
tion satisfying:

• There exists a constant A such that for every f; y; �+; �− we have

Ep(f; y; �+; �−)¿A:

• For every �− and every y, f satisfying yf¿ 1 we have

lim
�+→∞

Ep(f; y; �+; �−) = A:

Then, if X = {(x1; y1); : : : ; (xL; yL)} is a linearly separable data set, the hyperplane
h(x) that maximizes the normalized margin also minimizes asymptotically (�+ → ∞)
the weighted sum-of-squares error function:

EP(f; X) =
L∑

i=1

Ep(f(xi); y; �+; �−): (10)

2 Note that (9) does not derive from (8). Abusing of notation, we indicate that the weighting can be made
either at the error level or at the error derivative level.

322 E. Romero et al. / Neurocomputing 57 (2004) 313–344

Proof. Since A is a lower bound for Ep, we have EP(f; X)¿L · A for any function
f(x). Since X is linearly separable, h(x) satis=es that support vectors have margin
yih(xi)=1, whereas yih(xi)¿ 1 for non-support vectors. The second hypothesis implies
that, for every xi ∈X , Ep(h(xi); y; �+; �−) = A asymptotically (�+ → ∞).

Remark.

• The theorem holds true independently of whether the data set X is linearly separable
either in the input space or in the feature space.

• The previously suggested weighted error functions (8) and (9) satisfy the hypotheses
of the theorem, with the additional property that the absolute minimum of Ep is
attained when the margin equals 1.

• The reciprocal may not be necessarily true, since there can be many di:erent hy-
perplanes which asymptotically minimize EP(f; X). However, the solution obtained
by minimizing EP(f; X) is expected to have a similar behavior than the hyperplane
of maximal margin. In particular, using (8) or (9):
◦ It is expected that a large �+ will be related to a hard margin.
◦ For the linearly separable case, the expected margin for every support vector

is 1.
◦ For the non-linearly separable case, points with margin less or equal than 1 are

expected to be support vectors.
Experimental results with several synthetic and real-world problems suggest that
these hypotheses seem to be well founded (see Sections 5–7).

The relation among �+, the learning algorithm, and the hardness of the margin de-
serves special attention. Suppose that EP is minimized with an iterative procedure, such
as Back-Propagation (BP) [29], and the data set is linearly separable. For large �+,
the contribution of superclassi=ed points to EP can be ignored. Far away from the
minimum there exist points whose margin is smaller than 1 − &, for a certain small
&¿ 0. Very close to the minimum, in contrast, the margin value of every point is
greater than 1− &. Using the same terminology that in the SVM approach, the number
of bounded support vectors decreases as the number of iterations increases, leading
to a solution without bounded support vectors. In other words, for linearly separable
data sets and large �+, the e:ect of an iterative procedure minimizing EP is the in-
crease of the hardness of the solution with regard to the number of iterations. For
small �+, in contrast, the contribution of superclassi=ed points to EP cannot be ig-
nored, and the solutions obtained probably share more properties with the regression
solution.

For non-linearly separable data sets, it seems that the behavior could be very similar
to the linearly separable case (in the sense of the hardness of the solution). In this
case, the existence of misclassi=ed points will lead to solutions having a balanced
combination of bounded and non-bounded support vectors. As a consequence, solutions
close to the minimum may lead to over=tting, since they are being forced to concentrate
on the hardest points to classify, which may be outliers or wrongly labeled points. The
same sensitivity to noise was observed for the AdaBoost algorithm in [7].

E. Romero et al. / Neurocomputing 57 (2004) 313–344 323

4.3. Practical considerations

Some bene=ts can be obtained by minimizing an error function as the one de=ned
in (10), since there is no assumption about the architecture of the FNN:

• In the =nal solution, there is no need to have as many hidden units as points in the
data set (or any subset of them), nor the frequencies must be the points in the data
set.

• There is no need to use kernel functions, since there is no inner product to compute
in the feature space.

In addition, it allows to deal with multiclass and multilabel problems as FNN usually
do:

• For C-class problems, an architecture with C output units may be constructed, so
that the learning algorithm minimizes the weighted multiclass sum-of-squares error,
de=ned as usual [1]:

EC
P (f

c
FNN; X) =

L∑
i=1

C∑
c=1

Ep(fc
FNN(xi); y

c
i ; �

+; �−): (11)

• The error function de=ned in (11) also allows to deal with multilabel problems with
the same architecture.

Finally, it is independent of the particular algorithm used to minimize the error function.
In fact, it is even independent of using FNN to minimize EP(f; X).

4.4. Related work

From a theoretical point of view, SVM for regression have been shown to be equiv-
alent, in certain cases, to other models such as Sparse Approximation [13] or Regular-
ization Networks [33]. The theoretical analysis that states the relation between one-class
SVM and AdaBoost can be found in [26]. These results are obtained by means of the
analysis and adaptation of the respective cost functions to be optimized. But the error
functions used in these works are qualitatively di:erent from the one proposed in the
present work.

For linearly separable data sets, a single-layer perceptron learning algorithm that
asymptotically obtains the maximum margin classi=er is presented in [27]. The archi-
tecture used is an MLP with sigmoidal units in the output layer and without hidden
units, trained with BP. In order to work, the learning rate should be increased exponen-
tially, leading to weights arbitrarily large. In contrast to our approach, no modi=cation
of the error function is done.

In [35], a training procedure for MLP based on SVM is described. The activation
function is not necessarily a kernel function, as in our model. However, there are
many other di:erences, since the learning process is guided by the minimization of the
estimation of an upper bound of the Vapnik–Chervonenkis dimension.

324 E. Romero et al. / Neurocomputing 57 (2004) 313–344

The work in [40] investigates learning architectures in which the kernel function can
be replaced by more general similarity measures that can have internal parameters. The
cost function is also modi=ed to be dependent on the margin, as in our scheme. In
particular, the cost function E(X) =

∑L
i=1 [0:65− tanh(mrg(xi; yi; f))]2 is used in the

experiments presented. Another di:erence with our work relies in the fact that in [40]
the frequencies are forced to be a subset of the points in the data set.

5. Experimental motivation

We performed some experiments on both arti=cial (Section 6) and real data (Section
7) in order to test the validity of the new model and the predicted behavior explained
in Section 4. All experiments were performed with FNN trained with standard BP
weighting the sum-of-squares error derivative (9). From now on, we will refer to this
method as BPW. The parameter �− was set to 0 in all experiments, so that misclassi=ed
points had always a weight equal to 1. If not stated otherwise, every architecture
have linear output units, the initial frequencies were 0 and the initial range for the
coeLcients was 0:00001. Synthetic problems were trained in batch mode, whereas
real-world problems were trained in pattern mode.

Regarding the FNN training model proposed in this paper, we were interested in
testing:

• Whether learning is possible or not with a standard FNN architecture when a weighted
sum-of-squares error EP(f; X) is minimized with standard methods.

• Whether the use of non-kernel functions can lead to a similar behavior to that of
kernel functions or not.

• The e:ect of large �+, together with the number of iterations, on the hardness of
the margin.

• The identi=cation of the “support vectors”, simply by comparing their margin value
with 1.

• The behavior of the model in multiclass and multilabel problems minimizing the
error function de=ned in (11).

• The behavior of the model in both linearly and non-linearly separable cases, with
linear and non-linear activation functions.

In real-world problems, we made several comparisons among FNN trained with BPW
(for several activation functions and number of epochs), SVM with di:erent kernels,
and AdaBoost with domain partitioning weak learners. Our main interest was to in-
vestigate the similarities among the partitions that every model induced on the input
space. We can approximately do that by comparing the outputs of the di:erent learned
classi=ers on a test set, containing points never used during the construction of the
classi=er. There are several motivations for these comparisons. First, testing the hy-
potheses claimed for the new model regarding its similarities to SVM (Section 4),
when the parameters are properly chosen. Second, comparing di:erent paradigms of
margin maximization (e.g., SVM and AdaBoost), and di:erent parameters within the

E. Romero et al. / Neurocomputing 57 (2004) 313–344 325

same paradigm. Finally (Section 7.2.3), the discovery of very di:erent models with
good performance may lead to signi=cant improvements in the predictions on new
data, since larger di:erences among models may be related to more independence in
the errors made by the systems [25,1].

6. Experiments on synthetic data

In this section, the experiments on arti=cial data are explained. With these problems,
the predicted behavior described in Section 4 is con=rmed.

6.1. Two linearly separable classes

Our =rst experiment consisted of learning the maximal margin hyperplane of two
linearly separable classes. We constructed two di:erent linearly separable data sets (L1
and R1), shown in Fig. 2. Despite of their apparent simplicity, there is a big di:erence
between the maximal margin hyperplane (dashed line) and the minimum sum-of-squares
hyperplane (dotted line), used as the initial weights for BPW minimizing (10) in an
MLP without hidden layers. Solid lines in Fig. 2 show the resulting hyperplanes after
the training (until numerical convergence) for the two values of �+ previously used in
Fig. 1. As can be observed, the maximal margin hyperplane was obtained for �+ = 9,
so that the e:ect of large �+ together with the number of iterations on the hardness
of the solution margin was con=rmed. When looking at the output calculated by the
network, we could see that every point had functional margin strictly greater than 1
except for the support vectors of the maximal margin hyperplanes, which had margin
very close to 1. This fact con=rmed the prediction about the support vectors just by
looking at their margin value.

α+ = 9

α+ = 9
α+ = 3

α+ = 3

5

10

5

5 10

10

5

x - y - 3 = 0

10

2x - 9y + 41/2 = 0

Fig. 2. Separating hyperplanes (solid lines) after minimizing the weighted sum-of-squares (10) for di:erent
values of �+ in the two-class linearly separable problems L1 (left) and R1 (right). Dotted and dashed lines
represent the minimum sum-of-squares and the maximal margin hyperplanes, respectively.

326 E. Romero et al. / Neurocomputing 57 (2004) 313–344

5 10

10

5

5 10

10

5

Fig. 3. Separating hyperplanes when minimizing the weighted sum-of-squares (11) for �+=9 in the three-class
linearly separable problems L2 (left) and R2 (right).

6.2. Three linearly separable classes

Our second experiment consisted of trying to learn three linearly separable classes.
As previously, we constructed two di:erent linearly separable data sets (L2 and R2),
shown in Fig. 3. In this case, the constructed MLP had three output units, with BPW
minimizing (11). In the same conditions that in the previous section, solid lines in
Fig. 3 show the resulting hyperplanes (the output function for every output unit) after
the minimization with BPW for �+=9. We looked at the output calculated by the net-
work for every point in the data set, in order to identify the support vectors. Splitting the
resulting network into one network for every class, we observed that every output unit
of every network, as in the two linearly separable case, had functional margin strictly
greater than 1 for every point in the data set except for the support vectors obtained
after the one-vs-all binarization of the problem, which had margin very close to 1. It
con=rms our hypothesis about the applicability of the model to multiclass problems.

6.3. The two spirals problem

The well known Two Spirals problem consists of identifying the points of two in-
terlocking spirals with a training set of 194 points. An SVM with Gaussian kernels and
standard deviation 1 was constructed using the SVMlight software [16] 3 (for polyno-
mial kernels we did not obtain satisfactory results). The hard margin solution contained
176 support vectors (0 bounded). In order to make a comparison with an FNN with
the same activation functions and the same frequencies, we constructed an RBFN with
194 hidden Gaussian units (also with standard deviation 1). The frequencies were =xed
to be the points in the data set, and the initial range for the coeLcients was 0:001.

3 Available from http://svmlight.joachims.org.

http://svmlight.joachims.org

E. Romero et al. / Neurocomputing 57 (2004) 313–344 327

Fig. 4. Generalization obtained by SVMlight (left), BPW with Gaussian functions (center) and BPW with
sine functions (right) for the Two Spirals problem. The results for BPW are the mean over 10 runs.

Since it is a separable problem with Gaussian kernels, we set �+ = 9. After 10 runs
of a training with BPW, the mean of the number of points with functional margin
less than 1:05 (“support vectors” in our model) was 168. These points were always a
subset of the support vectors obtained with the SVMlight software. None of them had
functional margin less than 0:95.

We also constructed an MLP with a hidden layer of 24 sinusoidal units, as in [34].
Initial frequencies for BPW were randomly assigned to an interval [−3:5; 3:5], and the
initial range for the coeLcients was 0:0001. We set again �+ = 9. After 10 runs of a
training with BPW, the mean of the number of points with functional margin less than
1:05 was 101:6, and none of them had functional margin less than 0:95. These results
con=rm that there is no need to use either an SVM architecture or kernel functions
(the sine is not a kernel function) when minimizing the weighted sum-of-squares error
proposed.

The good generalization obtained by these models is shown in Fig. 4, where the
corners are (−6:5;−6:5) and (+6:5;+6:5). It is worth noting that all the points in
the training set are radially equidistant inside a disk of radius 6:5. Therefore, while
Gaussian functions are expected to have a good behavior for this problem, it is not so
clear a priori for sine functions.

7. Experiments on real-world problems

Text and Natural Language Processing (NLP) is an area of research that has deserved
special attention by the Machine Learning community in recent years and provides
machine learning with a variety of interesting and challenging problems (see [3], for
instance). This is why we have concentrated on two classic classi=cation problems
from the NLP domain, namely Word Sense Disambiguation and Text Categorization,
for carrying out the experimental evaluation.

In both problems, a number of classi=ers have been learned by varying the learning
algorithm (BPW, SVM, and AdaBoost) and its associated parameters, and then com-
pared regarding the predictions on new unseen data. In doing so, a special attention

328 E. Romero et al. / Neurocomputing 57 (2004) 313–344

is devoted to the comparison between the BPW model presented in this paper and
SVM. By studying the agreement rates between both models and the importance of
the training vectors in the induced classi=ers we con=rm the already stated relations
between the margin maximization process performed in both models.

7.1. Word sense disambiguation

Word Sense Disambiguation (WSD) or lexical ambiguity resolution is the problem
of automatically determining the appropriate meaning (aka sense) to each word in a
text or discourse. As an example, the word age in a sentence like “his age was 71”
refers to the length of time someone has existed (sense 1), while in a sentence like
“we live in a litigious age” refers to a concrete historic period (sense 2). Thus, an
automatic WSD system should be able to pick the correct sense of the word “age”
in the previous two sentences basing the decision on the context in which the word
occurs.

Resolving the ambiguity of words is a central problem for NLP applications and
their associated tasks, including, for instance, natural language understanding, machine
translation, and information retrieval and extraction [14]. Although far from obtaining
satisfactory results [17], the best WSD systems up to date are based on supervised
machine learning algorithms. Among others, we =nd Decision Lists [42], Neural Net-
works [36], Bayesian learning [2], Examplar Based learning [22], AdaBoost [8], and
SVM [18] in the recent literature.

Since 1998, the ACL’s SIGLEX group has carried out the SensEval initiative, which
consists of a series of international workshops on the evaluation of Word Sense Dis-
ambiguation systems. It is worth noting that in the last edition of SensEval 4 we can
=nd (AdaBoost and SVM)-based classi=ers among the top performing systems.

7.1.1. Setting
Data set: We have used a part of the English SensEval-2 corpus (available through

the conference Web site), consisting of a set of annotated examples for 4 words (one
adjective, one noun, and two verbs), divided into a training set and a test set for each
word. Each example is provided with a context of several sentences around the word
to be disambiguated. Each word is treated as an independent disambiguation problem.

Table 1 contains information about the concrete words, the number of training and
test examples, and the number of senses (classes) per word. It can be observed that
the number of training instances is quite small, whereas the number of classes is
high. The high polysemy of the words is partly due to the sense repository used
for annotating the corpus. The sense de=nitions were extracted from the WordNet
lexico-semantic database [10], which is known to be very =ne grained. These facts
signi=cantly contribute to the diLculty of the data set.

4 A complete information about the SensEval initiative can be found at the following Web site:
http://www.cs.unt.edu/∼rada/senseval.

http://www.cs.unt.edu/~rada/senseval

E. Romero et al. / Neurocomputing 57 (2004) 313–344 329

Table 1
Description of WSD data set

Word PoS Training Test # Senses # Features

bar noun 249 65 10 3222
begin verb 667 170 9 6144
natural adjective 196 53 9 2777
train verb 153 35 9 1710

Features: Three kinds of information have been used to describe the examples and
to train the classi=ers. These features refer to local and topical contexts, and domain
labels.

Let “: : : w−3w−2w−1ww+1w+2w+3 : : :” be the context of consecutive words around
the word w to be disambiguated, and p±i (−36 i6 3) be the part-of-speech tag of
word w±i. Feature patterns referring to local context are the following 13: p−3; p−2,
p−1; p+1, p+2; p+3, w−2; w−1, w+1; w+2, (w−2; w−1), (w−1; w+1), and (w+1; w+2),
where the last three correspond to collocations of two consecutive words.

The topical context is formed by {c1; : : : ; cm}, which stand for the unordered set of
open class words appearing in a medium-size 21-word window centered around the
target word.

This basic set of features has been enriched by adding semantic information in the
form of domain labels. These domain labels are computed during a preprocessing step
using the 164 domain labels linked to the nominal part of WordNet 1.6 [21]. See [9]
for details about the preprocessing of the data set and about the attribute extraction.

Table 1 also shows the number of binary features per data set, resulting from the
instantiation of the feature patterns on the training set. It is worth noting, as an impor-
tant property of this data set, that the number of actual features is much higher (over
ten times) than the number of training examples for each word.
Models: Mainly due to the high number of features, the problem is linearly separable

(note that this does not imply that the problem should be easy to resolve, and in fact
it is not). This is why we have compared only linear models of BPW and SVM in
this experiment.

More speci=cally, we trained two linear perceptron FNN architectures for 200, 500,
1000, and 2000 epochs. Both models have been trained using BPW. The =rst ones
(bpw-1) used a value of �+ = 1, while the second ones (bpw-7) were trained with
�+ = 7. The problem was not binarized, so that BPW was trained to minimize (11).
Regarding SVM, an extensive exploration of the C parameter was done for linear
models in order to determine the ranges in which some di:erences in accuracy took
place. We determined that a value of C=1 corresponds to a hard-margin solution, while
a value of C between 10 and 20 times lower can be considered a soft-margin. Therefore,
we compared three SVM linear models using C values of 0.05, 0.1, and 1 (from soft
to hard). Finally, regarding AdaBoost, we trained 4 di:erent models by varying the
complexity of the weak rules to be acquired: decision stumps and =xed-depth decision
trees (DT) from depth 2 to 4 (see [30] for details). The smoothing parameter was

330 E. Romero et al. / Neurocomputing 57 (2004) 313–344

Table 2
Description and accuracy results of all models trained on the WSD problem

Identi=er Algorithm Activ.Fun. Epochs Accuracy (%)

bpw-1-200 BPW lin 200 72.45
bpw-1-500 BPW lin 500 73.99
bpw-1-1000 BPW lin 1000 73.37
bpw-1-2000 BPW lin 2000 73.37
bpw-7-200 BPW lin 200 72.76
bpw-7-500 BPW lin 500 73.68
bpw-7-1000 BPW lin 1000 74.30
bpw-7-2000 BPW lin 2000 73.37

Identi=er Software Kernel C-value Accuracy (%)

svm-C005 SVMlight lin 0.05 73.37
svm-C01 SVMlight lin 0.1 73.99
svm-C1 SVMlight lin 1 72.45

Identi=er Algorithm Weak Rules Rounds Accuracy (%)

ab-stumps AdaBoost stumps 300 73.37
ab-depth1 AdaBoost DT(1) 100 73.68
ab-depth2 AdaBoost DT(2) 50 72.13
ab-depth3 AdaBoost DT(3) 25 73.07

set to the default value [30], whereas the number of rounds has been empirically set
to achieve an error-free classi=cation of the training set (the BPW and SVM models
also achieved 100% learning of the training set). Both the SVM and AdaBoost models
were trained on a one-vs-all binarized version of the training corpus.

7.1.2. Results
Table 2 contains the basic information about the learning models and the global

accuracy results obtained by each of them on the WSD problem. Note that the accuracy
=gures have been calculated by averaging over the 4 words, considering all examples
together (micro-average).

It can be seen that all methods achieve accuracy rates that are signi=cantly higher
than the baseline 48.54% determined by the most-frequent-sense classi;er. Addition-
ally, all learning paradigms achieve comparable accuracy rates (ranging from 72.13% to
74.30%) con=rming that all three approaches are competitive in the WSD domain. Par-
enthetically, the best result, 74.30%, corresponds to the bpw-7-1000 model. It should be
noted that, though it could seem quite a low accuracy, the =ve best performing systems
in the SensEval-2 competition (including Boosting-based and SVM-based classi=ers)
achieved a global accuracy between 60% and 65% on the whole set of 73 words,
and that our =gures are mostly comparable to these systems when restricting to the 4
words treated in this study. It is also worth mentioning that a moderate over=tting to
the training examples is observed by the three methods. BPW models slightly over=t

E. Romero et al. / Neurocomputing 57 (2004) 313–344 331

Table 3
Agreement and Kappa values between linear BPW, AdaBoost and linear SVM models trained on the WSD
problem (test set)

svm-C005 svm-C01 svm-C1

Agreement Kappa Agreement Kappa Agreement Kappa
(%) (%) (%)

bpw-1-200 94.74 0.8964 93.48 0.8787 91.64 0.8481
bpw-1-500 96.28 0.9286 95.98 0.9279 93.50 0.8855
bpw-1-1000 96.28 0.9309 95.98 0.9256 93.81 0.8882
bpw-1-2000 94.43 0.8972 95.36 0.9136 93.50 0.8827

bpw-7-200 96.90 0.9397 95.35 0.9164 93.18 0.8810
bpw-7-500 96.28 0.9305 97.21 0.9527 95.67 0.9291
bpw-7-1000 94.74 0.8994 96.90 0.9428 96.59 0.9406
bpw-7-2000 93.19 0.8717 95.67 0.9199 96.28 0.9341

ab-stumps 82.35 0.6940 80.81 0.6762 80.81 0.6785
ab-depth1 83.28 0.7193 82.66 0.7169 82.66 0.7165
ab-depth2 82.66 0.7024 82.97 0.7132 83.59 0.7217
ab-depth3 82.97 0.7055 83.59 0.7209 84.21 0.7298

with the number of epochs, SVM with the hardness of the margin (i.e., high values of
the C parameter), and AdaBoost with the number of rounds (=gures not included in
Table 2) and with the depth of the decision trees.

The main goal in this experimental setting is to compare the similarities and di:er-
ences among the induced classi=ers rather than solely the accuracy values achieved.
For that, we calculated the agreement ratio between each pair of models on the test
set (i.e., the proportion of test examples in which the two classi=ers agree in their
predictions). Additionally, we have calculated the Kappa statistic. 5 Table 3 contains
a subset of these comparisons which allows us to extract some interesting conclusions
about the similarities and di:erences among the models learned.

Regarding the comparison between BPW and SVM models it can be observed that:

• All BPW models are fairly similar in their predictions to all SVM models. Note that
the agreement rates are always over 91% and that the Kappa values are over 0.84,
indicating very high agreement. This is specially remarkable, since the agreement
(and Kappa) values among the three SVM linear models (information not included
in Table 3) range from 94.42% () = 0:899) and 97.21% () = 0:947).

• Roughly speaking, the BPW models with �+ = 7 are most similar to SVM than the
ones with �+ = 1 (specially for high values of C), suggesting that high values for
�+ are more directly correlated with margin maximization.

5 The Kappa statistic ()) [5] is a measure of inter-annotator agreement which reduces the e:ect of chance
agreement. It has been used for measuring inter-annotator agreement during the construction of some semantic
annotated corpora [39,23]. A Kappa value of 0 indicates that the agreement is purely due to chance agreement,
whereas a Kappa value of 1 indicates perfect agreement. A Kappa value of 0.8 and above is considered as
indicating good agreement.

332 E. Romero et al. / Neurocomputing 57 (2004) 313–344

• Restricting to bpw-7 models, another connection can be made between the number of
epochs and the hardness of the margin. On the one hand, comparing to the svm-C005
models (SVM with a soft margin) the less number of epochs performed the higher
agreement rates are achieved. On the other hand, this trend is inverted when com-
paring to the hard-margin model of SVM (svm-C1). 6 Put in another way, restricting
to the bpw-7-2000 row, the more harder the SVM margin is, the more similar the
models are, whereas in the bpw-7-200 row the tendency is completely the opposite.

• Note that the behavior described in the last point is not so evident in the bpw-1
model, and that in some cases it is even contradictory. We think that this fact is
giving more evidence to the idea that high values of �+ are required to resemble the
SVM model, and that the hardness of the margin can be controlled with the number
of iterations.

Regarding the comparison between AdaBoost and SVM models it can be observed
that:

• Surprisingly, the similarities observed among all models are signi=cantly lower than
those between BPW and SVM. Now, the agreement rates (and Kappa values) range
from 80.81% ()=0:676) to 84.21% ()=0:730), i.e., 10 points lower than the former
ones. This fact suggests that, even the theoretical modeling of AdaBoost seems to
have strong connections with the SVM paradigm, there are practical di:erences that
makes the induced classi=ers to partition the input space into signi=cantly di:erent
areas.

• A quite clear relation can be observed between the complexity of the weak rules and
the hardness of the margin of the SVM model. The predictions of the AdaBoost mod-
els with low-complexity weak rules (say ab-stumps and ab-depth1), are more similar
to svm-C005 than to svm-C1. While the predictions of the AdaBoost models with
high-complexity weak rules (ab-depth2 and ab-depth3) are more similar to svm-C1
than to svm-C001. However, given that the absolute agreement rates are so low, we
think that this evidence should be considered weak and only moderately relevant.

• The inSuence of the complexity of the weak rules is signi=cant in the WSD prob-
lem. It can be observed that the disagreement among the four AdaBoost models is
also very high in many cases (results not present in Table 3). The agreement rates
vary from 84.83% () = 0:751) to 91.02% () = 0:855), being the most di:erent the
extreme models ab-stumps and ab-depth3 (although they are almost equivalent in
terms of accuracy).

7.2. Text categorization

Text categorization (TC), or classi=cation, is the problem of automatically assign-
ing text documents to a set of pre-speci=ed categories, based on their contents. Since

6 Note that there are two cells in the table that seems to contradict this statement, since the agreement
between bpw-7-2000 and svm-C1 should not be lower than the agreement between bpw-7-1000 and svm-C1,
and this is not the case. However, note that the di:erence in agreement is due to the di:erent classi=cation
of a unique example, and therefore they can be considered almost equivalent.

E. Romero et al. / Neurocomputing 57 (2004) 313–344 333

the seminal works in the early 1960s, TC has been used in a number of applications,
including, among others: automatic indexing for information retrieval systems, docu-
ment organization, text =ltering, hierarchical categorization of Web pages, and topic
detection and tracking. See [32] for an excellent survey on text categorization.

From the 1990s, many statistical and machine learning algorithms have been suc-
cessfully applied to the text categorization task, including, among others: rule induc-
tion, decision trees, Bayesian classi=ers, neural networks [41], on-line linear classi=ers,
instance-based learning, boosting-based committees [31], support vector machines [15],
and regression models. There is a general agreement in that support vector machines
and boosting-based committees are among the top-notch performance systems.

7.2.1. Setting
Data set: We have used the publicly available Reuters-21578 collection of docu-

ments, 7 which can be considered the most important benchmark corpus for the TC
task. This corpus contains 12,902 documents of an average length of about 200 words,
and it is divided (according to the “ModApte” split) into a training set of 9603 ex-
amples and a test set of 3299 examples. The corpus is labeled using 118 di:erent
categories and has a ratio of 1.2 categories per document. However, the frequency
distribution of these categories is very extreme (the 10 most frequent categories covers
75% of the training corpus, and there are 31 categories with only one or two ex-
amples). For that reason, we have considered, as in many other works, only the 10
most frequent categories of the corpus. In this way our training corpus contains 3113
documents with no category and a ratio of 1.11 categories per document in the rest.
Table 4 shows the number of examples for every category.
Features: Regarding the representation of the documents, we have used the sim-

ple bag of words model, in which each feature corresponds to a single word, and all
features are binary valued indicating the presence or absence of the words in the doc-
uments. We discarded using more complex document representations since the main
goal of this paper is not to achieve the best results on the TC task, but to make com-
parisons among several models, and because a quite limited utility has been observed
by considering these extensions. The attributes have been =ltered out by selecting the
50 most relevant for each of the ten classes and merging them all in a unique fea-
ture set, containing 387 features. The relevance measure used for ranking attributes

Table 4
Number of examples for the 10 most frequent categories in the TC problem for the training set (=rst row)
and test set (second row)

earn acq money grain crude trade interest wheat ship corn None

2877 1650 538 433 389 369 347 212 197 181 3113
1087 719 179 149 189 117 131 71 89 56 754

7 The Reuters-21578 collection and other variants are freely available from http://www.daviddlewis.
com/resources/testcollections.

http://www.daviddlewis.com/resources/testcollections
http://www.daviddlewis.com/resources/testcollections

334 E. Romero et al. / Neurocomputing 57 (2004) 313–344

is the RLM entropy-based distance function used for feature selection in decision-tree
induction [20].
Evaluation measures: Note that TC is a multiclass multilabel classi=cation problem,

since each document may be assigned a set of categories (which may be empty). Thus,
one may think that a yes/no decision must be taken for each pair (document, category),
in order to assign categories to the documents. The most standard way of evaluating
TC systems is in terms of precision (P), recall (R), and a combination of both (e.g.,
the F1 measure). Precision is de=ned as the ratio between the number of correctly
assigned categories and the total number of categories assigned by the system. Recall
is de=ned as the ratio between the number of correctly assigned categories and the total
number of real categories assigned to examples. The F1 measure is the harmonic mean
of precision and recall: F1(P; R) = 2PR=(P+ R). It is worth noting that a di:erence of
1 or 2 points in F1 should be considered signi=cant, due to the size of the corpus and
the number of binary decisions.
Models: The description of the models tested can be seen in Table 5, together with

the F1 results obtained on the test corpus and micro-averaged over the 10 categories. 8

As in the WSD data set, the problem was not binarized for FNN. Additionally, in this
data set we had the opportunity of testing the new model in a multilabel problem. Sev-
eral MLP architectures were trained with BPW minimizing (11), combining activation

Table 5
Description of the di:erent models for the comparison on the TC problem. For BP and BPW, the “Activ.Fun.”
column indicates the activation function of every layer and the number of hidden units

Identi=er Algorithm Activ.Fun. Epochs F1

bp-lin-500 BP lin 500 84.09
bpw-lin-50 BPW lin 50 88.84
bpw-lin-200 BPW lin 200 89.12
bpw-lin-500 BPW in 500 88.81
bpw-tnh-lin-50 BPW tnh-lin (35H) 50 89.93
bpw-tnh-lin-200 BPW tnh-lin (35H) 200 89.77
bpw-tnh-lin-500 BPW tnh-lin (35H) 500 89.41
bpw-sin-lin-50 BPW sin-lin (20H) 50 89.87
bpw-sin-lin-200 BPW sin-lin (20H) 200 88.93
bpw-sin-lin-500 BPW sin-lin (20H) 500 88.30

Identi=er Software Kernel C-value F1

svm-lin-C20 LIBSVM linear 20 88.20
svm-lin-C50 LIBSVM linear 50 88.85
svm-lin-C200 LIBSVM linear 200 89.09
svm-gau-C20 LIBSVM Gaussian 20 89.14
svm-gau-C50 LIBSVM Gaussian 50 89.62
svm-gau-C200 LIBSVM Gaussian 200 89.02

8 It is worth noting that these results correspond to non-over=tted models, since they are quite similar to
those obtained when model-selection is performed (see Section 7.2.3).

E. Romero et al. / Neurocomputing 57 (2004) 313–344 335

Table 6
Agreement and Kappa values between BPW and linear SVM models on the TC problem (test set)

svm-lin-C20 svm-lin-C50 svm-lin-C200

Agreement Kappa Agreement Kappa Agreement Kappa
(%) (%) (%)

bpw-lin-50 96.28 0.86 95.70 0.83 92.31 0.70
bpw-lin-200 93.88 0.76 95.62 0.82 95.24 0.80
bpw-lin-500 91.89 0.69 94.13 0.76 95.26 0.80

bpw-tnh-lin-50 93.81 0.75 94.56 0.77 93.60 0.73
bpw-tnh-lin-200 87.88 0.53 89.66 0.58 91.61 0.64
bpw-tnh-lin-500 86.44 0.48 87.77 0.51 89.34 0.56

bpw-sin-lin-50 92.52 0.70 93.53 0.73 93.43 0.72
bpw-sin-lin-200 86.81 0.51 87.88 0.53 89.57 0.58
bpw-sin-lin-500 84.06 0.43 85.06 0.44 86.63 0.48

functions (linear, hyperbolic tangent and sine), number of hidden units and number of
epochs. We set �+ = 7, so that the e:ect of superclassi=ed points can be ignored. The
non-linear activation functions used were hyperbolic tangent (tnh) and sine (sin). We
also trained a perceptron architecture with standard BP. The F1 results for FNN are the
average-output committee of the resulting networks for 5 di:erent runs. As usual, the
problem was binarized for SVM. We used the LIBSVM software [4] 9 to test several
models with linear, Gaussian (gau) and sigmoidal (hyperbolic tangent) kernels, and
di:erent values of the parameter C. We can observe the di:erent scale of the hardness
of the margin with regard to WSD , with values ranging from C=20 to 200. We used
LIBSVM instead of SVMlight due to some convergence problems of the latter in this
data set. Both for FNN and SVM, every non-linear activation function tested obtained
satisfactory performance. However, for SVM with sigmoidal kernels, the parameters of
the good models made the sigmoidal function work very similar to a linear function,
leading to models almost identical to linear SVM. We have not included these results
in the present work. In contrast, when we trained an FNN with BPW and hyperbolic
tangents as activation functions, the results were very satisfactory (see Table 5) and
the resulting models were di:erent from linear SVM (see Table 6). Similarly to SVM,
AdaBoost also needed the binarization of the data set. We trained 6 di:erent AdaBoost
models by varying the weak rules from decision stumps, to decision trees of depth
5. Regarding the F1 measure, the results obtained ranged from 87.68 (ab-stumps) to
88.94 (ab-depth5). We do not include the complete information in Table 5 for brevity
reasons and provided that this section mainly focuses on the comparison between BPW
and SVM.

9 Available from http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

http://www.csie.ntu.edu.tw/~cjlin/libsvm

336 E. Romero et al. / Neurocomputing 57 (2004) 313–344

7.2.2. Results
We can see that the perceptron with standard BP obtained a poor performance,

whereas the other linear classi=ers (BPW and SVM) clearly outperformed this model
(see Table 5). Therefore, it seems that the inductive bias provided by the maximization
of the margin has a positive e:ect in this problem, when linear classi=ers are used. In
contrast, for non-linear functions this e:ect was not observed (we also trained several
architectures with standard BP and non-linear activation functions, leading to similar
results to those of non-linear models of Table 5). As in WSD , a slight over=tting was
present at every non-linear model tested: BPW with regard to the number of epochs,
SVM with regard to the hardness of the margin and AdaBoost (although slightly) with
regard to the number of rounds.

In Table 6 it can observed the comparison of the predictions in the test set (agree-
ment 10 and Kappa values) among several SVM models with linear kernels and the
solutions obtained with BPW:

• Looking only at linear BPW models, a strong correlation between the number of
epochs and the hardness of the margin can be observed. It can be checked by simply
looking at the table by rows: BPW models with 50 epochs tend to be more di:erent
as the hardness of the margin increases, whereas BPW models with 500 epochs tend
to be more similar to hard margin SVM models. This con=rms again the relation
between the hardness of the margin and the number of iterations, provided �+ has
a large value. For BPW with non-linear activation functions this behavior is not so
clear, although there also exist similar tendencies in some cases (see, for example,
the rows of the models with 500 epochs).

• Looking at the table by columns, the tendency of the SVM model with C = 20 is
to be more similar to the BPW models with 50 epochs. However, the SVM model
with the hardest margin (C200) signi=cantly tends to be more similar to models with
many epochs only for linear BPW activation functions. For non-linear functions, the
tendency is the opposite. Looking at the most similar models between SVM and
BPW, we can see that, as expected, the most similar models to svm-lin are those of
bpw-lin, with very signi=cant di:erences over the non-linear ones. The di:erences
decrease as the margin becomes harder.

The comparison of BPW models with SVM with Gaussian kernels can be seen in
Table 7. A similar behavior can be observed, but with some di:erences:

• The tendency of linear BPW models changes: the less similar model to those with
200 and 500 epochs is now svm-gau-C200, the model with hardest margin. In con-
trast, non-linear BPW models have the same tendency previously shown, leading to
a situation where the agreement rates between svm-gau-C200 and any other model
is low. This may be indicating that the harder the margin (either with a larger C in
SVM or more epochs in BPW), the highest the importance of the kernel is.

10 Due to the vast majority of negatives in all the (document, category) binary decision of the TC problem,
the negative–negative predictions have not been taken into account to compute agreement ratios between
classi=ers.

E. Romero et al. / Neurocomputing 57 (2004) 313–344 337

Table 7
Agreement and Kappa values between BPW and Gaussian SVM models on the TC problem (test set)

svm-gau-C20 svm-gau-C50 svm-gau-C200

Agreement Kappa Agreement Kappa Agreement Kappa
(%) (%) (%)

bpw-lin-50 95.69 0.83 93.60 0.74 89.16 0.58
bpw-lin-200 95.81 0.82 95.95 0.82 92.32 0.68
bpw-lin-500 94.12 0.76 95.05 0.79 92.91 0.71

bpw-tnh-lin-50 95.08 0.79 94.64 0.77 91.27 0.64
bpw-tnh-lin-200 89.96 0.59 92.05 0.65 92.84 0.69
bpw-tnh-lin-500 88.07 0.52 89.63 0.56 90.25 0.59

bpw-sin-lin-50 93.98 0.75 94.20 0.75 92.08 0.67
bpw-sin-lin-200 88.37 0.55 89.68 0.58 90.60 0.62
bpw-sin-lin-500 85.60 0.46 86.85 0.48 87.97 0.53

Table 8
Agreement and Kappa values between linear SVM and Gaussian SVM models on the TC problem (test set)

svm-gau-C20 svm-gau-C50 svm-gau-C200

Agreement Kappa Agreement Kappa Agreement Kappa
(%) (%) (%)

svm-lin-C20 96.44 0.86 93.16 0.73 88.85 0.58
svm-lin-C50 98.52 0.94 95.87 0.83 90.94 0.64
svm-lin-C200 94.63 0.78 96.45 0.87 94.07 0.75

• Surprisingly, there exists a strong similarity between SVM with Gaussian kernels and
linear BPW, specially for non-hard margin SVM models. For non-linear activation
functions, BPW models with few epochs are also quite similar to these SVM mod-
els. This may be indicating that soft margin models are quite similar among them,
regardless of the kernel function. To con=rm this hypothesis, we also looked at the
agreement among the di:erent SVM models (Table 8). As it can be observed, the dif-
ferences grow up as the hardness for the Gaussian kernel takes more extreme values.

Figs. 5 and 6 show another interesting comparison we made regarding the training
vectors. This experiment aims at investigating the relation between the margin of train-
ing vectors in the SVM model and those of the BPW model. The SVM model chosen
for the comparison was svm-gau-C50. We selected two di:erent BPW models, one
very similar in agreement to svm-gau-C50 and another very di:erent, bpw-lin-200 and
bpw-sin-lin-500, respectively (see Table 7). In the X axis of the plots in Fig. 5 we
have the 9; 603 training vectors of the svm-gau-C50 model for the binarized problem
of class earn (the most frequent category), ordered by its margin value (i.e., the =rst
points in the left of each plot are those training points with a lower margin value). In

338 E. Romero et al. / Neurocomputing 57 (2004) 313–344

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

T
ra

in
in

g
P

oi
nt

s
of

 b
pw

-li
n-

20
0

Training Points of svm-gau-C50

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

T
ra

in
in

g
P

oi
nt

s
of

 b
pw

-s
in

-li
n-

50
0

Training Points of svm-gau-C50

Fig. 5. Comparison of training vectors between svm-gau-C50 (X -axis) and bpw-lin-200 (left) or
bpw-sin-lin-500 (right).

0

500

1000

1500

2000

0 100 200 300 400 500 600 700 800

S
up

po
rt

 V
ec

to
rs

 in
 b

pw
-li

n-
20

0

Support Vectors of svm-gau-C50

0

500

1000

1500

2000

0 100 200 300 400 500 600 700 800

S
up

po
rt

 V
ec

to
rs

 in
 b

pw
-s

in
-li

n-
50

0

Support Vectors of svm-gau-C50

Fig. 6. Comparison of support vectors between svm-gau-C50 (X -axis) and bpw-lin-200 (left) or
bpw-sin-lin-500 (right).

the Y -axis it is shown the position that every vector would occupy if the respective
model had been ordered following the same criterion (left for bpw-lin-200 and right
for bpw-sin-lin-500). In Fig. 6 we have the same plot only for the 796 support vectors
of the svm-gau-C50 model. 11 A straight line indicates the (ideal) exact coincidence
between the two models. It can be clearly seen that there exists a very strong corre-
lation for bpw-lin-200, whereas the correlation with bpw-sin-lin-500 is much weaker.
Therefore, these models not only are similar or di:erent (see Table 7) in their pre-
dictions, but also in the importance that both give to the points in the training set, in
particular to the support vectors. 12

11 Although, theoretically, non-bounded support vectors have margin 1, the computationally obtained margin
may not be exactly 1. We have ordered the vectors by its computational margin. The percentage of support
vectors of the svm-gau-C50 model which occupy a position inferior to 796 are 88:69% for the bpw-lin-200
model and 59:93% for bpw-sin-lin-500.

12 Similar results to those presented in Figs. 5 and 6 were also observed for the remaining nine categories
of the problem.

E. Romero et al. / Neurocomputing 57 (2004) 313–344 339

When we made the comparisons of AdaBoost with the previous models, we observed
that none of the AdaBoost models were very similar to either BPW or SVM models.
The maximum similarity found was between ab-stumps and svm-lin-C200, with an
agreement rate of 89.83% and a Kappa value of 0.61 (not included in the tables). This
behavior had also been observed in the WSD problem.

7.2.3. Exploiting classi;er diversity
In the previous section, we have seen that the performance of the obtained models

seems to be independent of the similarities among them, whatever the learning model
is used (i.e., there exist BPW, SVM, and AdaBoost classi=ers with a good performance
and di:erent behaviors on the test set). This observation opens the avenue to combine
classi=ers in the TC problem. In this section a preliminary experiment is presented in
this direction in order to con=rm this hypothesis.

In order to conduct a fair experiment, model selection was performed on the training
set. In doing so, a 5-fold cross-validation (CV) experiment was performed, and the
parameters that maximized accuracy were selected for training the =nal classi=ers using
the whole training set.

Table 9 contains the best parameterizations according to the model selection and
the F1 results obtained by the corresponding classi=ers on the test set. Compared to

Table 9
Parameters selected by the model selection procedure and F1 results obtained by the corresponding BPW,
SVM, and AdaBoost classi=ers in the 5-fold CV and the test set

Identi=er Epochs F1 (5-fold CV) F1 (test)

bpw-lin 140 87.45 89.12
bpw-tnh-lin 110 88.38 89.96 (∗)
bpw-sin-lin 60 88.19 89.84 (∗)

Identi=er C-value F1 (5-fold CV) F1 (test)

svm-lin 70 87.48 89.05
svm-gau 30 87.68 89.36 (∗)

Identi=er Rounds F1 (5-fold CV) F1 (test)

ab-stumps 200 86.35 87.92
ab-depth1 100 87.09 88.63
ab-depth2 300 87.29 88.78 (∗)
ab-depth3 300 87.21 89.01 (∗)
ab-depth4 500 87.34 88.50 (∗)
ab-depth5 500 87.21 88.97 (∗)

Identi=er Classi=ers F1 (5-fold CV) F1 (test)

Ensemble Marked with (∗) 88.77 90.42

340 E. Romero et al. / Neurocomputing 57 (2004) 313–344

Table 5 of the previous section, we observe that model selection has led to coherent
and competitive classi=ers, and that none of the classi=er variants tested in the previous
section correspond to a degenerate case due to over=tting.

The combination procedure used was a simple majority (unweighted) voting of a
subset of classi=ers. The ensemble of classi=ers to combine was determined on the
training set (within the 5-fold cross-validation setting) by a greedy procedure that de-
parts from the best model (bpw-tnh-lin) and then iteratively adds the pair of classi=ers
that maximizes the increase of the F1 measure. According to this procedure, the best
ensemble of classi=ers on the training set turned out to be: bpw-tnh-lin, ab-depth2,
bpw-sin-lin, ab-depth3, ab-depth4, ab-depth5, and svm-gau. This ensemble achieved
F1 measures of 88.77 in the cross-validation experiment and 90.42 in the test set,
outperforming any of the individual results in both cases.

It is worth noting that although the AdaBoost-based classi=ers performed slightly
worse than BPW and SVM in the TC problem many of them were included in the
voting scheme, probably due to the diversity they introduce. Additionally, note that
none of the linear models were selected for the ensemble.

8. Conclusions and future work

In this paper, a new learning model of FNN that maximizes the margin has been
presented. The key idea of the model is to use a weighting of the sum-of-squares error
function, which is inspired by the AdaBoost algorithm. The hardness of the margin, as
in SVM, can be controlled, so that this model can be used for the non-linearly separable
case as well. As FNN usually do, the proposed model allows to deal with multiclass
and multilabel problems. In addition, it is not restricted to an SVM architecture nor to
the use of kernel functions, independently of the concrete training algorithm used. The-
oretic and experimental results have been shown con=rming these claims. In particular,
the extensive experimentation conducted on NLP problems showed a clear correlation
between the hardness of the margin and the number of epochs in BPW models with
large �+. Several comparisons among this new model, SVM and AdaBoost were made
in order to see the agreement of the predictions made by the respective classi=ers.
The results obtained mostly con=rmed the expected behaviors, but the evidence that
there exist important di:erences in the behavior of several models with good perfor-
mance suggests that they can be combined in order to obtain better results than every
model individually. This idea was con=rmed experimentally, in the TC problem, in a
very simple voting scheme. We think that more complex combination schemes among
state-of-the-art TC-classi=ers could signi=cantly improve existing results on the TC
task. Some advanced experiments on this topic can be found in [28].

One surprising result was the observation that the similarities between two classi-
cal margin maximization techniques, like AdaBoost and SVM classi=ers, were quite
low. This fact, if con=rmed in subsequent experiments, could give rise to important
improvements on the performances of individual classi=ers, simply by combining them
adequately. With regard to BPW, although the learning algorithm can be parametrized
in order to resemble the SVM model, also very di:erent and competitive classi=ers

E. Romero et al. / Neurocomputing 57 (2004) 313–344 341

can be learned. In fact, the performance of the obtained models seems to be indepen-
dent of their similarities to the SVM model (i.e., there exist models with a very good
performance and very di:erent of the best SVM models).

The weighting functions proposed in this work are only a =rst proposal to weight
the sum-of-squares error function. We think that this issue deserves further research. In
particular, we are interested in de=ning weighting functions more robust to over=tting
either by relaxing the importance of the error of the very bad classi=ed examples (e.g.,
following the idea of the BrownBoost algorithm [11]), which are probably outliers or
noisy examples, or by including a regularization term in the weighted sum-of-squares
error function (10).

Although in this work we have only considered classi=cation problems, the same
idea can be applied to regression problems, just by changing the condition of the
weighting function (7) from mrg(xi; yi; fFNN)¿ 0 to |fFNN(xi)− yi|6 &, where & is a
new parameter that controls the resolution at which we want to look at the data, as in
the &-insensitive cost function proposed in [37]. We are currently working in how to
adapt the weighted sum-of-squares error function to this new regression setting.

Acknowledgements

The authors thank the anonymous reviewers for their valuable comments and sug-
gestions in order to prepare the =nal version of the paper.

This research has been partially funded by the Spanish Research Department (CI-
CYT’s projects: DPI2002-03225, HERMES TIC2000-0335-C03-02, and PETRA
TIC2000-1735-C02-02), by the European Commission (MEANING IST-2001-34460),
and by the Catalan Research Department (CIRIT’s consolidated research group
2001SGR-00254 and research grant 2001FI-00663).

References

[1] C.M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press Inc, New York, 1995.
[2] R.F. Bruce, J.M. Wiebe, Decomposable Modeling in Natural Language Processing, Comput. Linguistics

25 (2) (1999) 195–207.
[3] C. Cardie, R. Mooney (Guest Eds.) Introduction: machine learning and natural language, Machine

Learning (Special Issue on Natural Language Learning) 34 (1–3) (1999) 5–9.
[4] C.C. Chang, C.J. Lin, LIBSVM: A Library for Support Vector Machines, http://www.csie.ntu.edu.

tw/∼cjlin/libsvm, 2002.
[5] J. Cohen, A coeLcient of agreement for nominal scales, J. Educational Psychol. Measure. 20 (1960)

37–46.
[6] N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector Machines, Cambridge University

Press, UK, 2000.
[7] T.G. Dietterich, An experimental comparison of three methods for constructing ensembles of decision

trees: bagging, boosting, and randomization, Mach. Learning 40 (2) (2000) 139–157.
[8] G. Escudero, L. M3arquez, G. Rigau, Boosting Applied to Word Sense Disambiguation in: R. L1opez

de M1antaras, E. Plaza (Eds.), Proceedings of the 11th European Conference on Machine Learning,
ECML-2000, Springer LNAI 1810, Barcelona, Spain, 2000, pp. 129–141.

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

342 E. Romero et al. / Neurocomputing 57 (2004) 313–344

[9] G. Escudero, L. M3arquez, G. Rigau, Using LazyBoosting for Word Sense Disambiguation, in:
Proceedings of the Second Senseval Workshop on the Evaluation of WSD Systems, Tolouse, France,
2001, pp. 71–74.

[10] C. Fellbaum (Ed.), WordNet. An Electronic Lexical Database, MIT Press, 1998.
[11] Y. Freund, An adaptive version of the boost by majority algorithm, Mach. Learning 43 (3) (2001)

293–318.
[12] Y. Freund, R.E. Schapire, A decision-theoretic generalization of on-line learning and an application to

boosting, J. Comput. System Sci. 55 (1) (1997) 119–139.
[13] F. Girosi, An equivalence between sparse approximation and support vector machines, Neural Comput.

10 (6) (1998) 1455–1480.
[14] N. Ide, J. V1eronis, Introduction to the special issue on word sense disambiguation: the state of the art,

Comput. Linguistics 24 (1) (1998) 1–40.
[15] T. Joachims, Text Categorization with Support Vector Machines: Learning with Many Relevant Features,

in: C. N1edellec, C. Rouveirol, Proceedings of the 10th European Conference on Machine Learning,
ECML-1998, LNAI-1398, Chemnitz, Germany, 1998, pp. 137–142.

[16] T. Joachims, Making large-scale SVM learning practical, in: B. SchYolkopf, C. Burges, A. Smola (Eds.),
Advances in Kernel Methods—Support Vector Learning, The MIT Press, Cambridge MA, 1999, pp.
169–184.

[17] A. Kilgarri:, J. Rosenzweig, English SENSEVAL: report and results, in: Proceedings of the Second
International Conference on Language Resources and Evaluation, LREC-2000, Athens, Greece, 2000,
pp. 1239–1243.

[18] Y.K. Lee, H.T. Ng, An empirical evaluation of knowledge sources and learning algorithms for word
sense disambiguation, in: Proceedings of the Seventh Conference on Empirical Methods in Natural
Language Processing, EMNLP-2002, Philadelphia, PA, 2002, pp. 41–48.

[19] M. Leshno, V.Y. Lin, A. Pinkus, S. Schocken, Multilayer feedforward networks with a nonpolynomial
activation function can approximate any function, Neural Networks 6 (6) (1993) 861–867.

[20] R. L1opez de M1antaras, A distance-based attribute selection measure for decision tree induction, Mach.
Learning 6 (1) (1991) 81–92.

[21] B. Magnini, G. Cavaglia, Integrating subject =eld codes into wordnet, in: Proceedings of the Second
International Conference on Language Resources and Evaluation, LREC-2000, Athens, Greece, 2000,
pp. 1413–1418.

[22] H.T. Ng, Exemplar-based word sense disambiguation: some recent improvements, in: Proceedings of the
Second Conference on Empirical Methods in Natural Language Processing, EMNLP-1997, Providence,
RI, 1997, pp. 208–213.

[23] H.T. Ng, C.Y. Lim, S.K. Foo, A case study on inter-annotator agreement for word sense disambiguation,
in: Proceedings of the ACL SIGLEX Workshop: Standardizing Lexical Resources, SIGLEX-1999,
College Park, MD, 1999, pp. 9–13.

[24] J. Park, I.W. Sandberg, Approximation and radial-basis-function networks, Neural Comput. 5 (2) (1993)
305–316.

[25] M.P. Perrone, L.N. Cooper, When networks disagree: ensemble methods for hybrid neural networks,
in: R.J. Mammone (Ed.), Arti=cial Neural Networks for Speech and Vision, Chapman & Hall, London,
1993, pp. 126–142.

[26] G. RYatsch, S. Mika, B. SchYolkopf, K.-R. MYuller, Constructing boosting algorithms from SVMs: an
application to one-class classi=cation, IEEE Trans. Pattern Anal. Mach. Intell. 24 (9) (2002) 1184–
1199.

[27] S. Raudys, Evolution and generalization of a single neurone: I. Single-layer perceptron as seven statistical
classi=ers, Neural Networks 11 (2) (1998) 283–296.

[28] E. Romero, X. Carreras, L. M3arquez, Exploiting diversity of margin-based classi=ers research report,
LSI-03-49-R, LSI Department, Universitat Polit3ecnica de Catalunya, Barcelona, 2003.

[29] D.E. Rumelhart, G.E. Hinton, R.J. Williams, Parallel Distributed Processing, Vol. 1, The MIT Press,
Cambridge, MA, 1986.

[30] R.E. Schapire, Y. Singer, Improved boosting algorithms using con=dence-rated predictions, Mach.
Learning 37 (3) (1999) 297–336.

E. Romero et al. / Neurocomputing 57 (2004) 313–344 343

[31] R.E. Schapire, Y. Singer, BOOSTEXTER: a boosting-based system for text categorization, Mach. Learning
39 (2–3) (2000) 135–168.

[32] F. Sebastiani, Machine learning in automated text categorization, ACM Comput. Surveys 34 (1) (2002)
1–47.

[33] A.J. Smola, B. SchYolkopf, K.R. MYuller, The connection between regularization operators and support
vector kernels, Neural Networks 11 (4) (1998) 637–650.

[34] J.M. Sopena, E. Romero, R. Alqu1ezar, Neural networks with periodic and monotonic activation
functions: a comparative study in classi=cation problems, in: Proceedings of the Ninth International
Conference on Arti=cial Neural Networks, ICANN-1999, Edinburgh, Scotland, pp. 323–328.

[35] J.A.K. Suykens, J. Vandewalle, Training multilayer perceptron classi=ers based on a modi=ed support
vector method, IEEE Trans. Neural Networks 10 (4) (1999) 907–911.

[36] G. Towell, E.M. Voorhees, Disambiguating highly ambiguous words, Comput. Linguistics 24 (1) (1998)
125–146.

[37] V. Vapnik, The Nature of Statistical Learning Theory, Springer, New York, 1995.
[38] V. Vapnik, The support vector method of function estimation, in: C. Bishop (Ed.), Neural Networks

and Machine Learning, Springer, Berlin, 1998, pp. 239–268.
[39] J. V1eronis, A study of polysemy judgements and inter-annotator agreement, in: Programme and

Advanced Papers of the First Senseval Workshop, Herstmonceux Castle, Sussex, England, 1998,
pp. 2–4.

[40] P. Vincent, Y. Bengio, A neural support vector architecture with adaptive kernels, in: Proceedings of the
IEEE International Joint Conference on Neural Networks, IJCNN-2000, Como, Italy, 2000, pp. 187–192.

[41] Y. Yang, X. Liu, A Re-examination of Text Categorization Methods, in: Proceedings of the 22nd
Annual ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR-1999,
Berkeley, CA, 1999, pp. 42–49.

[42] D. Yarowsky, Hierarchical decision lists for word sense disambiguation, Comput. Humanities 34 (2)
(2000) 179–186.

Enrique Romero received the B.Sc. degree in Mathematics in 1989 from the Uni-
versitat Aut�onoma de Barcelona, and in 1994 the B.Sc. degree in Computer Science
from the Universitat Polit�ecnica de Catalunya (UPC), Spain. In 1996, he joined
the Software Department (LSI, UPC), as an Assistant professor. He received his
M.Sc. degree in Arti=cial Intelligence in 2000 from the UPC, and he is currently
working toward his Ph.D. thesis. His research interests include Machine Learning
and Feature Selection.

Llu12s M3arquez is a Computer Science Engineer by the Universitat Polit�ecnica de
Catalunya (UPC), Barcelona, Spain, since 1992. He received his Ph.D. degree in
Computer Science from the UPC in 1999 and the UPC prize for Doctoral Dis-
sertations in the Computer Science area. Currently, he is an Associate Professor
of the Software Department (LSI, UPC) teaching at the Facultat d’Inform�atica
de Barcelona. He is also a senior researcher of the TALP Center for research in
Speech and Language Technologies (also at UPC). His current research interests are
focused on Machine Learning techniques applied to Natural Language Processing.

344 E. Romero et al. / Neurocomputing 57 (2004) 313–344

Xavier Carreras is a Computer Science Engineer by the Universitat Polit�ecnica de
Catalunya (UPC), Spain, since 2000. He received his M.Sc. degree in Arti=cial
Intelligence in 2003 from the UPC, and he is currently doing his Ph.D. thesis in
Arti=cial Intelligence at the same university. His research interests include Natural
Language Processing and Machine Learning.

	Margin maximization with feed-forward neural networks: a comparative study withSVM and AdaBoost
	Introduction
	Preliminaries
	Feed-forward Neural Networks (FNN)
	Support Vector Machines (SVM)
	AdaBoost

	A Comparison between FNN and SVM
	Comparing the output functions
	Comparing the cost functions

	An FNN that maximizes the margin
	Contribution of every point to the cost function
	Weighting the contribution
	Practical considerations
	Related work

	Experimental motivation
	Experiments on synthetic data
	Two linearly separable classes
	Three linearly separable classes
	The two spirals problem

	Experiments on real-world problems
	Word sense disambiguation
	Setting
	Results

	Text categorization
	Setting
	Results
	Exploiting classifier diversity

	Conclusions and future work
	Acknowledgements
	References

