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Abstract— An experimental comparison among Support Vec- in section Il. The experimental work is described in section
tor Machines, AdaBoost and a recently proposed model for |||, In section IV, the comparison among the learned models
maximizing the margin with Feed—forward Neural Networks g giscussed. Section V is devoted to describe the construction

has been made on a real-world classification problem, namely . . o
Text Categorization. The results obtained when comparing their of the confidence measure for these margin—based classifiers.

agreement on the predictions show that similar performance does Finally, section VI concludes and outlines some directions for
not imply similar predictions, suggesting that different models further research.

can be combined to obtain better performance. As a consequence
of the study, we derived a very simple confidence measure of the
prediction of the tested margin—based classifiers. This measure
is based on the margin curve. The combination of margin—
based classifiers with this confidence measure lead to a marked . .
improvement on the performance of the system, when combined COmpared in the experiments.

Il. MARGIN—BASED CLASSIFIERS

This section briefly describes the margin—based models

with several well-known combination schemes. Support Vector Machines According to [15], SVM can
be described as follows: the input vectors are mapped into
|. INTRODUCTION a (usually high—dimensional) inner product space through

Recent years have seen the explosion of margin-based ci@ne non-linear mapping, chosena priori. In this space
sification systems in a wide variety of applications. Typicallythe feature spacg an optimal separating hyperplane is con-
the inductive bias of a margin-based learning method allowgucted. In SVM, an optimal separating hyperplane means a
to consider the output values of a classifier as a good meashiygerplane with maximal distance with respect to the closest
of the confidence on its predictions. In this work, severgxample in the training set (maximal normalized margin).
comparisons among Support Vector Machines (SVM) [15]he (functional) margin of a pointz;, y;) with respect to
AdaBoost [13] and a recently proposed model for maximizing functionf is defined asnrg(x;, i, f) = v f(2:). By using
the margin with Feed—forward Neural Networks (FNN) [9p kernel functionk (u, v) the mapping can be implicit, since
have been made. The empirical study has been performedith inner product defining the hyperplane can be evaluated
the Text Categorization task, a real-world classification pro@s (¢(u), ¢(v)) = K (u,v) for every two vectorsu, v € RY.
lem from the Information Retrieval domain, and extends initidiheé most usual kernel function&’(u,v) are polynomial,
experimentation involving the aforementioned algorithms [10f3aussian-like or some particular sigmoids.

To the best of our knowledge, this is the first so detailed Margin maximization, derived from statistical learning the-
empirical comparison made among margin—-based classifi@iy, has been proved to be a good inductive bias, both
The evidence that there exist important differences in titeeoretically and in a wide variety of practical applications
predictions of several models with good performance suggeBib

that they can be combined in order to obtain better results tharAdaBoost The purpose of boosting algorithms is to find a
every individual model. For this purpose, we studied a way toghly accurate classification rule by combining mavsakor
assign to every prediction a confidence factor depending baseclassifiers. In this work we use the generalized AdaBoost
its output value. Although the ranges of the margins are veajgorithm presented in [13] by Schapire and Singer.

different for different models, the shape of the margins curvesLet (x1,v1),..., (¢m,yn) be the set ofm training ex-

in the training and test sets were very similar among themmples, where each; belongs to an input spac& and
Therefore, we can measure the confidence of every predictipre Y = {+1,—1} is the corresponding class label. Ad-

of a classifier taking its margin curve as a reference. TtaBoost learns a numbeF of base classifiers, each time
value can be computed as the ratio between the position in firesenting the base learning algorithm a different weighting
distribution and the total number of predictions in the referenae/er the examples. A base classifier is seen as a real-valued
distribution. The combination of margin—based classifiers wifanction 2 : X — R. The output of eact:; is a real number
heuristics based on these ideas lead to a marked improvenvembse sign is interpreted as the predicted class, and whose
on the performance of the system in a consistent way, wheragnitude is the confidence in the prediction. The AdaBoost
combined with several well-known combination schemes. classifier is a weighted vote of the base classifiers, given by

The overall organization of the paper is as follows. Thihe expressiorf(z) = Zleatht(x), wherea; represents the
description of the margin—-based classifiers tested can be fowwght of h; inside the whole classifier. Again, the sign of



f(z) is the class of the prediction and the magnitude is its Data Set We have used the publicly available Reuters-
confidence. 21578 collection of documeritswhich can be considered the
The learning bias of AdaBoost is proven to be very aggresiost important benchmark corpus for the TC task. This corpus
sive at maximizing the margin of the training examples armgbntainsl2, 902 documents of an average length of ab2d
this makes a clear connection to the SVM learning paradignords, and it is divided (according to the “ModApte” split)
[13]. More details about the relation between AdaBoost aridto a training set ob, 603 examples and a test set &f299
SVM can be found in [8], [12]. examples. The corpus is labeled usirig different categories
The base classifiers we use are decision trees of fixed dept] has a ratio of.2 categories per document. However, the
The internal nodes of a decision tree test the value of Boolei@gquency distribution of these categories is very extreme (the
predicate (e.g. “the wordlollar occurs in the document”). 10 most frequent categories coveis of the training corpus,
The leaves of a tree define a partition over the input spaged there argl categories with only one or two examples).
X, and each leaf contains the prediction of the tree for tf@r that reason, we have considered, as in many other works,
corresponding part oft’. We follow the criterion presented only the 10 most frequent categories of the corpus. As a
in [13] for growing base decision trees and computing theonsequence, our training corpus containg13 documents
predictions in the leaves. A maximum depth is used as théth no category and a ratio df 11 categories per document
stopping criterion. in the rest. Table | shows the number of examples for every
Feed—forward Neural Networks for Margin Maximiza- ~category.
tion. A margin—based learning model for FNN is presented in Features Regarding the representation of the documents,
[9]. The key idea of the model is a weighting of the sum—ofwe have used the simplesag-of-wordsmodel, in which each
squares error function, inspired by the AdaBoost algorithrfgature corresponds to a single word and all features are binary
This weighting function modifies the contribution of everyalued, indicating the presence or absence of the words in
point to the total error depending on its margin. The proposéde documents. We discarded using more complex document

weighting function is representations or feature weighting schemes since the main
. goal of this paper is not to achieve the best results on the
e—Imrgl® if mrg >0 TC task, but to make comparisons among several models in

ot o) = o= ' '
D(zi,yi,at,a”)=¢  +lmrg] if mrg < 0anda-#£0 2 simple and controlled framework. The attributes have been

filtered out by selecting th&) most relevant for each of the ten
classes and merging them all in a unique feature set, containing
where the marginnrg = mrg(z;, i, f) = v f(x;) as usual. 387 features. The relevance measure used for ranking attributes
In the |inear|y Separab|e case, the hyperp|ane that ma.bﬁ-the RLM entropy—based distance function used for feature
mizes the normalized margin also minimizes asymptoticaglection in decision-tree induction [6].
the weighted sum—of-squares error function proposed. TheéEvaluation Measures TC is a multiclass multilabel clas-
hardness of the margin can be controlled, as in SVM, so ttgdfication problem, since each document may be assigned a
this model can be used for the non—linearly separable cases@kof categories. Thus, one may think thates/nodecision
well (see [9], [10] for details). must be taken for each paitocument, category), in order
All experiments conducted with this model were performet® assign categories to the documents. The most standard way
with standard Back—propagation (BP) [11] weighting the sunaf evaluating TC systems is in terms pfecision (P), recall
of-squares error derivative, as in [10]. Every architecture héd), and theF; measure. Precision is defined as the ratio
linear output units. From now on, we will refer to this methodetween the number of correctly assigned categories and the
as BPW. total number of categories assigned by the system. Recall is
defined as the ratio between the number of correctly assigned
1. EXPERIMENTAL SETTING categories and the total number of real categories assigned to
examples. Th&) measure is the harmonic mean of precision
We have concentrated on a classical problem from thed recall:F; (P, R) = 2PR/(P + R).
Information Retrieval domain, namely Text Categorization \Models. The classification models tested can be seen in the
(TC), for carrying out the experimental evaluation. Text catirst two columns of table Il. We used the LIBSVM software
egorization, or classification, is the problem of automaticallp]? to test several models with lineafin) and gaussian
assigning text documents to a set of pre—specified categorig@u) kernels. As usual, the problem was binarized for SVM.
based on their contents. From the 90's, many statistical agghilarly to SVM, AdaBoost also needed the binarization of
machine learning algorithms have been applied to the Tfe data set. We trainefi different AdaBoost models (gener-
task, including among others: rule induction, decision treeglized AdaBoost algorithm with confidence—rated predictions,
bayesian classifiers, neural networks, on-line linear classifiegs, described in [13]) by varying the complexity of the weak

instance—based learning, boosting—based committees, S¥ifes from decision stumps to decision trees of dépBeveral
and regression models. There is a general agreement in that

SVM and boosting-based Committees are among the toppyajiable at www.daviddlewis.com/resources/testcollections.
notch performance systems [14] in this task. 2Freely available from www.csie.ntu.edu.sadjlin/libsvm.
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TABLE |
NUMBER OF EXAMPLES FOR THELO MOST FREQUENT CATEGORIES IN THH C PROBLEM FOR THE TRAINING AND TEST SETS

earn acq money | grain | crude | trade | interest | wheat ship corn None

Training Set| 2,877 | 1,650 538 | 433 | 389 | 369 | 347 | 212 | 197 | 181 | 3,113
Test Set | 1,087| 719 | 179 | 149 | 189 | 117 | 131 71 | 89 | 56 | 754

Multi—layer Perceptrons (MLP) architectures were trained with « SVM models are very similar among them.

BPW and different humber of hidden units and activation « None of the AdaBoost models is very similar to either

functions: linear I{n), hyperbolic tangenttih) and sine gin). BPW or SVM models.

Output activation functions were always linear. Thigresults  « Although it could be expected that AdaBoost models

for BPW are always the average—output committee of the could be very similar among them, we observed that it

resulting networks fob different runs. was not the case, since the maximum similarity found
Model Selection In order to conduct a fair experiment, was betweeab-depthZandab-depth5with an agreement

model selection was performed on the training set. In doing rate 0f92.67% and a Kappa value di.70. Models ab-

so0, a 5—fold cross—validation (CV) experiment was performed, stumpsand ab-depth] for example, did not agree more

and the parameters that maximized accuracy were selected for than87.67% (and a Kappa value df.53) with any other

training the final classifiers using the whole training set. AdaBoost model. For the sake of simplicity, these results
Table Il contains the best parameterizations according to the are not included in the tables.

model seile'ction and th, results obtained by the correqund- These results show that the performance of the obtained

ing classifiers on the 5—fold CV and the test corpus, micro=

. : models seems to be independent of the similarities among
averaged over the) categories. Théj results achieved on thethem, whatever the learning model is used, i.e., there exist

task are competitive, given the simple document representat M, AdaBoost and BPW classifiers with a good performance

used. As an example, a recent work [5] shows performan% i different behaviors on the test set. This observation opens

between87.5 and 92.0.or'1 the same data 'set,.by using Iine%e avenue to combine classifiers in this problem.
SVM with many sophisticated feature weightings. . . . :
Comparing the Margin Curves and Relative Margins. In
IV. COMPARING MARGIN-BASED CLASSIFIERS order to look for a criterion to combine the learned classifiers,
Comparing the Predictions on the Test Set More we compared their margin curves on the test set. It can be
insight on the learned models can be obtained by comparioigserved that, whereas the ranges of the margins are quite
the partitions that every model induced on the input spaddifferent, the shape of the margins curves are very similar
rather than solely the accuracy values achieved. For that, feeall the models. As an example, margin curves for models
calculated the agreement ratio between each pair of modgigi-gay ab-depth3and bpw-tnh-linare shown in figure 1
on the test set (i.e., the proportion of test examples in whiébr the binarized problem of classarn (the most frequent
the two classifiers agree in their predictions). Additionally, weategory). In theX axis of the plots we have the examples
calculated the Kappa statistia)( The Kappa statistic is a ordered by its margin (i.e., the first points in the left of each
measure of inter—annotator agreement which reduces the effdot are those training examples with a lower margin value).
of chance agreement [3]. It has been used for measuring int#rthe Y axis the margin of the example is plotted. It can be
annotator agreement during the construction of some semawfiserved that misclassified examples have relatively small (in
annotated corpora [7]. A Kappa value 6findicates that absolute value) negative margins, whereas points with large
the agreement is purely due to chance agreement, whenglges always correspond to well classified examples. Note
a Kappa value ofl indicates perfect agreement. A Kappé#he different ranges of margins of the respective classifiers.
value of 0.8 and above is considered as indicating good Since the number of examples with margin near0tds
agreement. Both the agreement ratio and the Kappa statistitall, the margin curves alone cannot explain the observed
have been computed without taking into account the walifferences among the models (see table IIl). A possible expla-
classified negative examples, since these predictions are mution is that there exist examples with very different margins
relevant at all for the task (note that by default an example daesdifferent models, but this effect is compensated among
not belong to any category). Indeed, well classified negatiegamples to have similar margin curves shapes. The relative
examples are neither considered in themeasure. margin of the examples of models in figure 1 was compared,
Table Il contains a subset of these comparisons whiebnfirming this claim. The results of the comparison can be
allows us to extract some interesting conclusions about theen in figure 2. TheX axis plots the examples of every re-
similarities and differences among the models learned:  spective model, ordered by its margin value, as in figure 1. The
« Linear models are more similar among them than noi~ axis shows the position that each example would occupy
linear ones. This effect is also observed for AdaBoo#tthe model in theY axis had been ordered following the
models with simplest weak hypotheses. same criterion (the relative margin). A straight liné £ X)



TABLE 1l

CLASSIFIERS IN THE5—FOLD CV AND THE TEST SET

PARAMETERS SELECTED BY THE MODEL SELECTION PROCEDURE ANB] RESULTS OBTAINED BY THE CORRESPONDINGVM, ADABOOST ANDBPW

Identifier Software C—value | F; (5-fold CV) | I (test)
svm-lin LIBSVM 70 87.48 89.05
svm-gau LIBSVM 30 87.68 89.36
Identifier Algorithm Rounds | F; (5-fold CV) | I (test)
ab-stumps AdaBoost 200 86.35 87.92
ab-depthl AdaBoost 100 87.09 88.63
ab-depth2 AdaBoost 300 87.29 88.78
ab-depth3 AdaBoost 300 87.21 89.01
ab-depth4 AdaBoost 500 87.34 88.50
ab-depth5 AdaBoost 500 87.21 88.97
Identifier Algorithm Epochs | F; (5-fold CV) | I (test)
bpw-Ilin BPW 140 87.45 89.12
bpw-tnh-lin | BPW (35 hidden)| 110 88.38 89.96
bpw-sin-lin | BPW (20 hidden) 60 88.19 89.84
TABLE Il

PERCENTAGES OF AGREEMENTAGR) AND KAPPA (KAP) VALUES AMONG SEVERAL SVM, ADABOOST ANDBPW MODELS ON THE TEST SET

svm-lin

svm-gau

bpw-lin

bpw-tnh-lin

bpw-sin-lin

Agr | Kap

Agr | Kap

Agr | Kap

Agr | Kap

Agr | Kap

93.10 0.71
94.13 0.75
90.25 0.61
89.15 0.56
87.95 0.51
88.47 0.53
88.20 0.53
88.01 0.52

98.39 0.93| 96.05 0.83
96.31 0.84
91.54 0.67
88.12 0.53
86.79 0.49
87.53 0.52
87.30 0.51

86.99 0.50

92.43 0.68
93.27 0.71
90.62 0.62
89.34 0.56
88.27 0.52
88.54 0.53
88.07 0.52
88.07 0.51

svm-lin

svm-gau
ab-stumps
ab-depthl
ab-depth2
ab-depth3
ab-depth4
ab-depth5

0.93
0.65
0.52
0.47
0.50
0.49
0.48

98.39
90.66
87.44
86.11
86.97
86.48
86.18

0.65
0.54
0.49
0.52
0.51
0.50

90.84
88.13
86.86
87.52
87.29
87.06

would indicate an exact coincidence between the two modelsductive bias that different learning algorithms use. These
Clearly, there exists a very strong correlation betweem- confidence values will be used to combine the predictions of
gau and bpw-lin with regard to the relative margin, whereaghe classifiers.
the other models are less correlated. Therefore, these modefthe procedure works as follows. First, we obtain a ref-
are not only similar or different in their predictions, but als@rence margin—based distribution for every model and every
in the importance that both give to the examples in the datéass. Second, we compute the position that every prediction
set. occupies in the reference distribution (i.e., the number of
Similar results to those presented in figures 1 and 2 wepeedictions in the distribution with lower value than the current
also observed for the remaining nine categories of the probleme). The confidence value of every prediction is computed as
and data sets (the training set and the training and test setshef ratio between the position in the distribution and the total
the 5—fold CV). number of predictions in the reference distribution. Note that
V. EXPLOITING DIVERSITY OF MARGIN-BASED the output \{alues cannqt bg directly useq because the ranges
CLASSIFIERS of the margins were quite different (see figure 1).

In the brevi tion. we hav N that quite differ tln order to obtain the reference distributions, for every
e previous section, we have see at quie diterelity jer and every class we take the predictions in the test sets
classification models may have similar performances, W|6

very similar margin curves. This fact allows to scale th the 5-fold CV performed in the model selection stepue

y sl 9 o . ' fo the different frequencies of positive and negative examples
predictions of every classifier in order to obtain a confiden € the data set we consider a reference distribution for
value within a fixed and normalized range, under the same '
C”te”qn for all classifiers. This 'S. an important issue, S”T‘C('%‘Observe that this distribution would be the margin distribution if all the
a confidence measure has to be independent of the particetamples were correctly classified
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positive predictions and another one for negative predictiorsyistem predicts whether this category should be assigned to
Therefore, the total number of reference distributiorissC’, the example or not. The majority option is selected. In WV,
where M is the number of models and is the number of each classifier votes with a weight proportional tofitsscore
classes. Given a prediction of a classifier on a test example gissimated in the model selection step. The PV scheme is a little
reference distribution is either the positive or the negative omeore complex and powerful since, in principle, it might re-
depending on the sign of that prediction. Then, its confidencever a category that receives a minority of the individual votes
value is the percentage of predictions (of the same modet,even none of them. Lef € {—1,+1} be the prediction of
class and sign) which are, in absolute value, lower thatassifierC;, on a classt and exampler. Given an example
the current one. Note that these confidence values canalpel category pair, the PV scheme calculafe®(z, k) =
computed for every classifier in an independent way (i.e., ondyg max,c{_1, 41} Z#j P(y|y' Ay’). The probabilities ofy

the predictions of that classifier are needed). given the predictions of each pair of classifiers are estimated

The procedure previously described was used to complieMaximum likelihood from frequency counts on the model
the confidence of every prediction for every model describ&§!€ction step. For non observed pairs of predictignsy’)
in section IIl. In order to test these confidence values, Wi back—off to conditional probabilities on the predictions
performed several combination experiments with three cof. individual c.Iassifiers. Similar to the computation of the
bination schemes. These experiments were carried out fir@fpP0osed confidence values, the results on the test sets of the
without the confidence values of the predictions, and secondly©!d CV performed in the model selection step were used as
with these values. For every combination scheme, the resultjfi§ référence to obtain any needed information (theveights
ensemble of classifiers was determined on the training &t WV or the probabilities for PV). Results are shown in table
(within the 5-fold CV setting) by a greedy procedure thaV, together with the results of the best single classifier.
departs from the best modeifw-tnh-li) and then iteratively  the second step consisted of using the confidence values to
adds the classifier that maximizes the increase of e jnnrove the previously tested combination schemes. The first
measure. combination (Maximum Confidence), similar to MV, selects

In a first step, we combined the learned models witlthe prediction of the model with higher confidence value. The
out using the confidence measure previously described. ¥ézond one (Weighted Voting Confidence) is similar to WV,
used three well-known combination schemes: Majority Votirgut the weights are directly the confidence values of every
(MV), Weighted Voting (WV) and Pairwise Voting (PV). In prediction instead of thé; values. The third one (Pairwise
the MV scheme, given a fixed category and an example, eadtiing Confidence) is a modification of the pairwise voting
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