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Introduction

Phrase Recognition

A very general definition of phrase:

A sequence of contiguous lexical items that forms a unit

of a certain type (e.g., named entities, syntactic chunks,

clauses, etc.)
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Introduction

Phrase Recognition Problems(1)

Chunking

[NP He ] [VP reckons ] [NP the current account deficit ]

[VP will narrow ] [PP to ] [NP only 1.8 billion ] [PP in ]

[NP September ] .

Named Entity Recognition

[PER Wolff ] , currently a journalist in [LOC Argentina ]

, played with [PER Del Bosque ] in the final years of the

seventies in [ORG Real Madrid ] .
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Introduction

Phrase Recognition Problems(2)

Clausing

(S The deregulation of railroads and trucking companies

(SBAR that (S began in 1980) ) enabled (S shippers to

bargain for transportation) . )

Phrase Recognition by Filtering and Ranking with Perceptrons 4



Introduction

Phrase Recognition

Phrase Recognition by Filtering and Ranking with Perceptrons 5



Introduction

Phrase Recognition

( )

Phrase Recognition by Filtering and Ranking with Perceptrons 5



Introduction

Phrase Recognition

( ) )(

Phrase Recognition by Filtering and Ranking with Perceptrons 5



Introduction

Phrase Recognition

( ) )(( )

Phrase Recognition by Filtering and Ranking with Perceptrons 5



Introduction

Phrase Recognition
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A solution is a coherent set of (embedded) phrases

x = x0, x1, x2, x3, x4

y = {(1, 2), (3, 3), (1, 4), (0, 4)}
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Introduction

Framework

• General algorithm for phrase recognition

? Machine Learning on local decisions/contexts

∗ 1st layer: filtering at word level

∗ 2nd layer: ranking at phrase level

? Inference Process to obtain the global solution
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Introduction

Framework

• General algorithm for phrase recognition

? Machine Learning on local decisions/contexts

∗ 1st layer: filtering at word level

∗ 2nd layer: ranking at phrase level

? Inference Process to obtain the global solution

• Usually, learning components are trained independently.

In this work a global training strategy is proposed
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Phrase Recognition Model

Phrase Score

We learn to score phrases. ∀k ∈ K:

scorek(s, e) → R

Given the score of (s, e):

• The sign tells whether (s, e) is a k-phrase or not.

• The magnitude indicates the confidence of the decision.
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Phrase Recognition Model

Phrase Recognition Model

Y: solution space, i.e. set of all coherent phrase sets.

PhRec(x) = arg max
y∈Y

∑
(s,e)k∈y

scorek(s, e)
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Phrase Recognition Model

Phrase Recognition Model

Y: solution space, i.e. set of all coherent phrase sets.

PhRec(x) = arg max
y∈Y

∑
(s,e)k∈y

scorek(s, e)

• Sequential case: O(n2) Dynamic Prog. search

• Hierarchical case: O(n3) Dynamic Prog. search
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Phrase Recognition Model

Phrase Recognition Model:
Start-End Candidates + Phrase Scoring

Y: solution space, i.e. set of all coherent phrase sets.

YSE: practical solution space, filtered at word level.

PhRec(x) = arg max
y∈YSE

∑
(s,e)k∈y

scorek(s, e)
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Phrase Recognition Model

Phrase Recognition Model:
Start-End Candidates + Phrase Scoring

Y: solution space, i.e. set of all coherent phrase sets.

YSE: practical solution space, filtered at word level.

PhRec(x) = arg max
y∈YSE

∑
(s,e)k∈y

scorek(s, e)

start and end binary classifiers perform filtering

YSE = {y∈Y | ∀(s, e)k∈y startk(s) ∧ endk(e)}
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Global Learning Algorithm

Learning Challenges

• Learn all functions (startk, endk, scorek) so as to

maximize the F1 measure on the recognition of phrases
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Global Learning Algorithm

Learning Challenges

• Learn all functions (startk, endk, scorek) so as to

maximize the F1 measure on the recognition of phrases

• Start-End:

? As filters, rather than default classifiers

? They define the input space to the score functions

• Score functions:

? The space of negative examples is too big ∼ O(n2)
? We need to know about Start-End behavior

? As rankers, rather than default classifiers

Phrase Recognition by Filtering and Ranking with Perceptrons 15



Global Learning Algorithm

Motivation for the ranking

(The cat) (eats) (fresh fish) .
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Global Learning Algorithm

Perceptron-based Learning

• Linear discriminant function, h w : Rn → R,

parametrized by a weight vector w

• Classification rule: h w(x) = sign(w · x) = ŷ

• On-line error-driven training algorithm

• Additive updating rule: wt+1 = wt + yx
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Global Learning Algorithm

Perceptron-based Learning

• Linear discriminant function, h w : Rn → R,

parametrized by a weight vector w

• Classification rule: h w(x) = sign(w · x) = ŷ

• On-line error-driven training algorithm

• Additive updating rule: wt+1 = wt + yx

• Representation function Φ : X → Rn to map sentence

instances x into n–dimensional feature vectors
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Global Learning Algorithm

Perceptron Learning Algorithm

Input: {(x1, y1), . . . , (xm, ym)}, xi are sentences, yi are solutions

Define: W = {wS,wE} ∪ {wk|k ∈ K}
Initialize: ∀w ∈ W w = 0;

for t = 1 . . . T

for i = 1 . . .m

ŷ = PhRecW (xi)
learning feedback(W,xi, yi, ŷ)

end-for

end-for

Output: the vectors in W
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Global Learning Algorithm

Learning Feedback(1)

• Phrases correctly identified: ∀(s, e)k ∈ y∗∩ŷ:

? Do nothing, since they are correct
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Global Learning Algorithm

Learning Feedback(1)

• Phrases correctly identified: ∀(s, e)k ∈ y∗∩ŷ:

? Do nothing, since they are correct

• Missed phrases: ∀(s, e)k ∈ y∗\ŷ:

? Update misclassified boundary words:

if (wS · Φw(xs) ≤ 0) then wS = wS + Φw(xs)
if (wE · Φw(xe) ≤ 0) then wE = wE + Φw(xe)

? Update score function, if applied:

if (wS · Φw(xs) > 0 ∧ wE · Φw(xe) > 0) then

wk = wk + Φp(s, e)
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Global Learning Algorithm

Learning Feedback(2)

• Over-predicted phrases: ∀(s, e)k ∈ ŷ\y∗:

? Update score function: wk = wk − Φp(s, e)
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Global Learning Algorithm

Learning Feedback(2)

• Over-predicted phrases: ∀(s, e)k ∈ ŷ\y∗:

? Update score function: wk = wk − Φp(s, e)

? Update words misclassified as S or E:

if (goldS(s) = 0) then wS = wS − Φw(xs)
if (goldE(e) = 0) then wE = wE − Φw(xe)
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Global Learning Algorithm

Learning Feedback(2)

• Over-predicted phrases: ∀(s, e)k ∈ ŷ\y∗:

? Update score function: wk = wk − Φp(s, e)

? Update words misclassified as S or E:

if (goldS(s) = 0) then wS = wS − Φw(xs)
if (goldE(e) = 0) then wE = wE − Φw(xe)

• Note that we deliberately do not care about false positives, i.e.,

wrongly predicted start or end words which do not finally

over-produce a phrase
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Experimental Evaluation

Experiments on NLP Problems

• CoNLL Benchmark Problems (public datasets):

? Syntactic Chunking (2000)

? Clause Identification (2001)

? Named Entity Recognition (2003)

• Features:

? Window-based features

? Phrase patterns

? Word forms, POS tags, chunk tags, affixes, orthography, etc.

? Filtering of features ocurring less than 3 times
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Experimental Evaluation

Experiments on NLP Problems(2)

• Some details about learning/evaluation:

? Training/developing/test data sets

? Voted perceptron algorithm

? Dual version using a degree 2 polynomial kernel

? Fixed number of epochs (15)

? ...more details in the paper
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Experimental Evaluation

Results(1)

development test
T P R F1 P R F1

Chunks 10 - - - 94.2% 93.3% 93.74
Clauses 11 89.8% 84.1% 86.8 88.0% 81.0% 84.36
NERC 12 89.6% 88.2% 88.9 83.9% 83.4% 83.68

• Chunks:

? Best result at competition time

? Third best result ever published on this data set

? (Kudoh & Matsumoto, 01): F1=93.91

? (Zhang et al., 02): F1=94.17
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Experimental Evaluation

Results(2)

development test
T P R F1 P R F1

Chunks 10 - - - 94.2% 93.3% 93.74
Clauses 11 89.8% 84.1% 86.8 88.0% 81.0% 84.36
NERC 12 89.6% 88.2% 88.9 83.9% 83.4% 83.68

• Clauses:

? Best result ever published on this data set

? (Carreras et al., 2002): F1=83.71
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Experimental Evaluation

Results(3)

development test
T P R F1 P R F1

Chunks 10 - - - 94.2% 93.3% 93.74
Clauses 11 89.8% 84.1% 86.8 88.0% 81.0% 84.36
NERC 12 89.6% 88.2% 88.9 83.9% 83.4% 83.68

• NERC:

? Lower results but competitive

? NE recognition depends more on the features (also external

knowledge) than on the structure
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Experimental Evaluation

Does Global Learning Work Better?
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Conclusions

Conclusions

• We have presented a general 2-layer perceptron-based learning

architecture for phrase recognition problems, and an online

learning algorithm to train all the perceptrons together
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Conclusions

Conclusions

• We have presented a general 2-layer perceptron-based learning

architecture for phrase recognition problems, and an online

learning algorithm to train all the perceptrons together

• Some good properties:

? Good results on several NLP problems

? The learning feedback takes into account the global solution

? Training the functions together is better than training them

separately

? On-line fashion: deals with negative examples in a natural way

? Simplicity and flexibility of the model

? Rich features can be developed at phrase level
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Conclusions

Current/Future Work

• Convergence proofs for the training algorithm and

theoretical bounds on generalization: coming soon!

• Further study of the interaction between layers during

training

• Solving several NLP tasks at the same time: POS

tagging + chunking; chunking + clausing; full parsing;

etc.
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Conclusions

Thank you very much for your attention!
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